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Prerequisite

0.1 Matrix product

Definition: Matrix Multiplication

Let A ∈ Mm×n(F) and B ∈ Mn×p(F). We define the matrix product AB = C to
be the matrix C ∈ Mm×p(F), constructed as follows:

C = AB = A
[⃗
b1 b⃗2 · · · b⃗p

]
=

[
A⃗b1 A⃗b2 · · · A⃗bp

]
.

That is, the jth column of C, c⃗j, is obtained by multiplying the matrix A by the
jth column of the matrix B:

c⃗j = A⃗bj, for all j = 1, . . . , p.

Example

Given A =

1 2
3 5
8 7

 , B =

[
−1 3
2 −4

]
, calculate the products of AB,BA if possible.

Solution:

• AB: since the # of columns of A is equal to the # of rows of B, this product
is defined. Then, we have:

AB =

1 2
3 5
8 7

[
−1 3
2 −4

]

=

1 2
3 5
8 7

[
−1
2

] 1 2
3 5
8 7

[
3
−4

]
=

(1)(−1) + (2)(2) (1)(3) + (2)(−4)
(3)(−1) + (5)(2) (3)(3) + (5)(−4)
(8)(−1) + (7)(2) (8)(3) + (7)(−4)


=

3 −5
7 −11
6 −4


• The product BA is undefined, since B has 2 columns, A has 3 rows, 2 ̸= 3.
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0.2. INVERSE OF A MATRIX

0.2 Inverse of a Matrix

Definition: Inverse of a Matrix

If an n× n matrix A is invertible, we refer to the matrix B such that AB = In as
the inverse of A. We denote the inverse of A by A−1. The inverse of A satisfies:

AA−1 = A−1A = In

Example

Determine whether the matrix A =

[
1 2
3 4

]
is invertible. If invertible, find inverse.

Solution: We will solve the super-augmented matrix:

[A|I2] =
[
1 2 1 0
3 4 0 1

]
By EROs, we can obtain: [

1 0 −2 1
0 1 3/2 −1/2

]
Thus, we conclude that the inverse of A is:

A−1 =

[
−2 1
3/2 −1/2

]

Let’s verify the calculations: AA−1 =

[
1 2
3 4

] [
−2 1
3/2 −1/2

]
=

[
1 0
0 1

]
= I2

There’s also a quick way to calculate the inverse of a matrix in F2×2:

Let B =

[
a b
c d

]
, we have:

• If ad− bc = 0, it is not invertible.

• If ad− bc ̸= 0, it is invertible, and the inverse is given by:

B−1 =
1

ad− bc

[
d −c
−b a

]
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0.3. LINEAR DEPENDENCE/INDEPENDENCE

0.3 Linear Dependence/Independence

Definition: Linear Dependence

• Linear Dependence:

we say that the vectors v⃗1, v⃗2, · · · , v⃗k ∈ Fn are linearly dependent if there
exist scalars c1, c2, · · · , ck ∈ F, not all zero, such that

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0

(0 means 0⃗, can fit any dimentions.)

• Linear Independence:

we say that the vectors v⃗1, v⃗2, · · · , v⃗k ∈ Fn are linearly independent if there
do not exist scalars c1, c2, · · · , ck ∈ F, not all zero, such that

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0

Equivalently we say that v⃗1, v⃗2, · · · , v⃗k ∈ Fn are linearly indepeent if the
only solution to the equation:

c1v⃗1 + c2v⃗2 + · · ·+ ckv⃗k = 0

is the trivial solution c1 = c2 = · · · = ck = 0.

• Edge case: the empty set ∅ is considered to be linearly independent.

Example of linearly indepeent

Determine whether the set V =
{(

1
0

)
,
(
0
1

)}
is linearly indepeent.

Solution: let c1, c2 ∈ F, such that c1
(
1
0

)
+ c2

(
0
1

)
= 0. That is,

(
c1
c2

)
= 0, which

implies c1 = c2 = 0, as the unique solution to that equation.
Therefore, the set V is linearly independent.

Example of linearly depeent

Determine whether the set T =
{(

1
0

)
,
(
2
0

)}
is linearly indepeent.

Solution: let c1, c2 ∈ F, such that c1
(
1
0

)
+ c2

(
2
0

)
= 0. That is,

(
c1+2c2

0

)
= 0, we

can indeed find some c1, c2, not both zero, satisfying this equation. For example,
c1 = 2, c2 = −1. Therefore, the set T is linearly independent.
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0.4. MATRIX INEQUALITY

0.4 Matrix inequality

Definition: Matrix inequality

The matrix inequality is a short version of a set of inequalities:

Ax ≤︸︷︷︸
or≥,=

b,A ∈ Rm×n, x ∈ Rn, b ∈ Rm

means

Arow1x ≤ brow1

Arow2x ≤ brow2

...

Arowmx ≤ browm

Example

If we say: 1 2 3
4 5 6
7 8 9

x ≤

4
5
6


it actually means:

x1 + 2x2 + 3x3 ≤ 4

4x1 + 5x2 + 6x3 ≤ 5

7x1 + 8x2 + 9x3 ≤ 6
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0.5. PARTIAL DERIVATIVE

0.5 Partial Derivative

Definition: Partial Derivative

Just like ordinary derivatives, the paritial derivative is defined as a limit. Let U
be an open subset of Rn and f : U → R a function. The partial derivative of f at
point α = (a1, a2, · · · , an) ∈ U with respect to the i-th variable xi is defined as:

∂f(α)

∂xi

= lim
g→0

f(a1, · · · , ai−1, ai + h, ai+1, · · · , an)− f(a1, · · · , ai, · · · , an)
h

= lim
h→0

f(α + hei)− f(α)

h

Where ei is the unit vector of i-th variable xi.

Remark

The method to calculate the partial derivative (with respect to xi) is to treat all
the variables other than xi as constant.

Example

• z = f(x, y) = x2 + xy + y2, then

∂z

∂x
= 2x+ y + 0 = 2x+ y

∂z

∂y
= 0 + x+ 2y = x+ 2y

• z = f(a, b, c) = a2 + b3 + c4 + ab+ 2bc+ 3ca+ 4abc, then

∂z

∂a
= 2a+ 0 + 0 + b+ 0 + 3c+ 4bc = 2a+ b+ 3c+ 4bc

∂z

∂b
= 0 + 3b2 + 0 + a+ 2c+ 0 + 4ac = 3b2 + a+ 2c+ 4ac

∂z

∂c
= 0 + 0 + 4c3 + 0 + 2b+ 3a+ 4ab = 4c3 + 2b+ 3a+ 4ab

• z = f(x1, x2) = x2
1 − x2, then

∂z

∂x1

= 2x1 + 0 = 2x1

∂z

∂x2

= 0− 1 = −1

Now you are fully capable of exploring the wonderful C&O. Hope all goes well with your
studies. See you in the next chapter.
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Chapter 1

Formulations

1.1 Overview

What is optimization? It is the action of making the best or most effective use of a
situation or resource. In this course, broadly speaking, optimization is the problem of
minimizing or maximizing a function subject to several constraints. Abstractly, we focus
on abstract optimization problem, (P):
Given a variable set X ⊆ Rn, constraints, and an objective function f : X → R.
Goal is to find some x ∈ X that minimizes or maximizes f . (May not exist all time)
In this course, we will focus on three special cases of P :

• Linear Program(LP).

• Integer Program (IP).

• Nonlinear Program (NLP).

Before giving the definitions of the programs above, we introduce:

Definition: Affine function

A function f : Rn → R is affine if f(x) = α⊤x+ β for α ∈ Rn, β ∈ R.
Additionally, f is linear if β = 0.

Examples

1. f(x) = x1 + 3x2 is affine, and also linear.

2. f(x) = −x1 + x2 + 1 is affine, but not linear.

3. f(x) = 2x1 + 4x2 + sin(x1) is not affine nor linear.

Definition: Affine constraint

A constraint:
g(x) ≤ b

is linear if g is affine. (Can also be ≥,= signs)

In the following sections, we will introduce LP, IP and NLP.
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1.2. LP MODELS

1.2 LP models

Definition: LP

The optimization problem

max︸︷︷︸
ormin

{f(x) : gi(x) ≤︸︷︷︸
or≥,=

bi,∀i = 1, 2, · · · ,m, x ∈ Rm}

is called a linear program (LP) if f, g1, g2, · · · , gm are all affine functions.

Examples

• Linear Program (LP):

max x1 + x2

s.t. x1 + 3x2 ≤ 4

x1 − x2 ≤ 2

x ≥ 0 (This stands for all xi ≥ 0).

• Not linear Programm: (I underbraced the place that makes it not an LP)

max x1 +
1

x2︸︷︷︸
!!!

s.t. x1 + 3x2 <︸︷︷︸
!!!

4

x1x2︸︷︷︸
!!!

≤ 2

Remark

Sometimes we can find that by doing some simplification, we can make a constraint
from non-linear into linear. For example, the P is given by:

max x1 + x2 + x3

s.t. x1 + 3x2 +
1

x3

≤ 4 +
1

x3

x1 − x2 ≤ 2

By subtracting 1
x3

on both sides of the first constraint, this constraint can be linear.
But attention here, even though we may be able to do some simplifications like
this, P is still not an LP.

Before we move into Integer programming (IP), let’s apply the LP we just learned first!
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1.2. LP MODELS

1.2.1 The formulation of LP

A formulation is a mathematical representation of the optimization problem, modeling
the real-life problem into formulations, which is the fundamental of optimization. In this
chapter, we will focus on how to formulate optimization problems.
More clearly, to formulate the problems in this chapter, we need to determine the vari-
ables, the objective function, and the constraints. Here is an example of formulating
a real-life problem into formulations.

Real life problem Examples

Suppose a factory manufactures four products, requiring time on two machines and
two types (skilled and unskilled) of labor. The amount of machine time and labor
(in hours) needed to produce a unit of each product and the sales prices in dollars
per unit of each product are given in the following table:

Product Machine 1 Machine 2 Skilled labor Unskilled labor Price
1 11 4 8 7 300
2 7 6 5 8 260
3 6 5 5 7 220
4 5 4 6 4 180

There are also some constraints:

• Each month, 700 hours are available on machine 1, 500 hours on machine 2.

• Each month, the factory can purchase up to 600 hours of skilled labor at $8
per hour and up to 650 hours of unskilled labor at $6 per hour.

The factory wants to determine how much of each product it should produce each
month and how much labor to purchase to maximize its profit (i.e. revenue from
sales minus labor costs).

We wish to find a formulation for this problem, that is, we need to determine the variables,
the objective function, and the constraints.

• Variables: The factory has to decide how much of each product to manufacture;
we capture this by introducing a variable xi for each i = 1, 2, 3, 4 for the number of
units of product i to manufacture. As part of the planning process, the company
must also decide on the number of hours of skilled and unskilled labor that it wants
to purchase. We therefore introduce variables yskilled and yunskilled for the number
of purchased hours of skilled and unskilled labor, respectively.

• Objective function: Deciding on a production plan now amounts to finding values
for variables x1, · · · , x4, yskilled and yunskilled. Once the values for these variables have
been found, the factory’s profit is easily expressed by the following function:

300x1 + 260x2 + 220x3 + 180x4︸ ︷︷ ︸
Profit from sales

− (8yskilled + 6yunskilled)︸ ︷︷ ︸
Labor costs

and the factory wants to maximize this quantity.
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1.2. LP MODELS

• Constraints:

– The total amount of time needed on machine 1 can’t exceed 700 hours:

11x1 + 7x2 + 6x3 + 5x4 ≤ 700

– The total amount of time needed on machine 2 can’t exceed 500 hours:

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

– Enough hours of skilled labor are purchased:

8x1 + 5x2 + 5x3 + 6x4 ≤ yskilled

– Enough hours of unskilled labor are purchased:

7x1 + 8x2 + 7x3 + 4x4 ≤ yunskilled

– The factory can purchase up to 600 hours of skilled labor:

yskilled ≤ 600

– The factory can purchase up to 650 hours of unskilled labor:

yunskilled ≤ 650

– All variables are non-negative by common sense:

x1, x2, x3, x4, yskilled, yunskilled ≥ 0

• Final formulation:

max 300x1 + 260x2 + 220x3 + 180x4 − 8yskilled − 6yunskilled

s.t. 11x1 + 7x2 + 6x3 + 5x4 ≤ 700

4x1 + 6x2 + 5x3 + 4x4 ≤ 500

8x1 + 5x2 + 5x3 + 6x4 ≤ yskilled

7x1 + 8x2 + 7x3 + 4x4 ≤ yunskilled

yskilled ≤ 600

yunskilled ≤ 650

x1, x2, x3, x4, yskilled, yunskilled ≥ 0

We will learn how to solve this LP soon, but now, just focus on how to formulate the
real-life problem!
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1.3. IP MODELS

1.3 IP models

Definition: IP

An Integer Program (IP) is a linear program with added integrality constraints
for some/all (at least 1) of the variables.
We call an IP mixed if there are integral and fractional variables and pure other-
wise.

Examples

• Integer Program (IP):

max x1 + x2

s.t. x1 + 3x2 ≤ 4

x1 − x2 ≤ 2

x1 ∈ Z.

• Not Integer Programm:

max x1 + 5x2

s.t. x1 + 3x2 ≤ 4

x1 − 5x2 ≤ 2

Remark 1

As the definition, an Integer Program (IP) is a linear program with added integrality
constraints for some/all (at least 1) of the variables. It is easy to think IPis a special
case of LP. But attention here, IP is not a special case of LP since there doesn’t
exist any affine function that constrains the variable as an integer.

Remark 2

Sometimes we have to let a variable x, be zero or one, to express some status. For
example, x = 0 means the machine is not working, and x = 1 means the machine
is working. We can use the (Binary) IP in this case, where the constraints include:

x ≥ 0

x ≤ 1

x ∈ Z

which means x is zero or one. But to prevent the conflict with the definition, try to
avoid writing: x(x−1) = 0 or x ∈ {0, 1} or sin(πx) = 0 etc. But it depends, please
verify with your instructors whether you can use these expressions when writing
an IP.
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1.3. IP MODELS

1.3.1 Language of Graph theory

A familiar problem: starting at location s, we wish to travel to t, what is the best
(shortest) route? Before, we usually found it by staring at it or using a computer to
forcibly enumerate. But we indeed have some more elegant ways to do this kind of
question. The goal of this section is to be able to formulate these kinds of questions into
an Integer Program (IP).

Definition: Graph

A graph G consists of

• Vertices: u,w, · · · ∈ V (G). (drawn as filled circles)

• Edges: uw,wz, · · · ∈ E (G). (drawn as connecting circles)

• Weight: Mostly it is the length of the edge, or the difficulty of passing.

• Adjacent: Two vertices u and v are adjacent if uv ∈ E (G).

• Endpoints: Vertices u and v are the endpoints of edge uv ∈ E (G).

• Incident: Edge e ∈ E (G) is incident to u ∈ V (G) if u is and endpoint of e.

• s,t-path : A s,t-path is a sequence

sv1, v1v2, v2v3, · · · , vk−1vk, vkt

where

– vi ∈ V (G) and sv1, vkt, vivi + 1 ∈ E (G),∀i
– ∀i ̸= j, vi ̸= vj Without this, it is called s,t-walk

• Matching: A collection M ⊆ E (G), no two edges in M shares an endpoint.

• Perfect Matching: V (M ) = V (G), given that M is a matching of G .

Remark

Edge’s compositions’ order doesn’t matter, for example, uw has the exactly same
meaning as wu since we are only focused on the undirected graph in this course.

It is very easy to lose concentration if we don’t draw the graph, for most of the situations,
drawing a graph to help to understand is encouraged. On the next page, we provide a
drawing to help understand these concepts.
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1.3. IP MODELS

Examples

Consider this graph, we have:

a b

cd

s t

• Vertices: s, a, b, c, d, t.

• Edges: sd, dc, ct, ad, bc, sa, ab, bt.

• Adjacent: (s, d), (d, c), (c, t), (a, d), (b, c), (s, a), (a, b), (b, t) are adjacent.

• Endpoints: d, a are the endpoints of edge da.

• Incident: Edge dc is incident to d and c.

• s,t-path : s → a → b → t is one s, t− path.

a b

cd

s t

• s,t-walk : s → a → d → a → b → t is one s, t− walk.

• Matching: Here, M = {sa, bt} is a matching, but not perfect.

a b

s t

• Perfect Matching: Here, M = {sa, dc, bt} is a perfect matching.

a b

cd

s t

15



1.3. IP MODELS

1.3.2 Perfect Matching Optimization

Perfect Matching Theorem

Use δ(v) to denote the set of edges incident to v, i.e.

δ(v) = {e ∈ E : e = vu for some u ∈ V }

Given G = (V ,E ),M ⊆ E is a perfect matching if and only if M ∩ δ(v) contains
a single edge for all v ∈ V .

By this theorem, we can formulate the perfect matching optimization problem using the
Binary Integer Program. The IP will have a binary variable xe for every edge e ∈ E , and
xe = 1 if e ∈ M , otherwise xe = 0. Also, here, we represent the weight of edge e as ce.
Then, we can write our IP as:

min
∑

(cexe : e ∈ E )

s.t.
∑

(xe : e ∈ δ(v)) = 1(∀v ∈ V )

x ≥ 0, x ∈ Z

Note here, that we don’t need to state that every xe ≤ 1, since it is a minimized question,
if xe > 1, it will cause a greater objective value, which won’t be picked up. Let’s apply!

Examples

a b

cd

s t

5
4

3

2

1

2

3

4

Objective function:∑
(cexe : e ∈ E ) = 2xsd + 2xdc + 4xct + xda + 3xcb + 5xsa + 4xab + 3xbt

Constraints:

• v = s, δ(s) = {sd, sa} ⇒ xsd + xsa = 1

• v = d, δ(d) = {ds, da, dc} ⇒ xsd + xda + xdc = 1

• v = c, δ(c) = {cd, cb, ct} ⇒ xcd + xcb + xct = 1

• v = t, δ(t) = {tc, tb} ⇒ xtc + xtb = 1

• v = a, δ(a) = {as, ad, ab} ⇒ xas + xad + xab = 1

• v = b, δ(b) = {ba, bc, bt} ⇒ xba + xbc + xbt = 1

• x ≥ 0, x ∈ Z
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1.3. IP MODELS

1.3.3 The Shortest Paths Optimization

In this section, we wish to formulate the shortest path optimization problem. Now, let
C ⊆ E be a set of edges whose removal disconnects s and t. This implies that every
s, t− path must have at least one edge in C .

Definition: cut

For S ⊆ V , we let δ(S ) be the set of edges with exactly one endpoint in S .

δ(S ) = {uv ∈ E : u ∈ S , v ̸∈ S}

We call δ(S ) an s, t− cut and t ̸∈ S

Examples

Consider this graph, we have:

a b

cd

s t

• δ(s) = sd, sa

a b

cd

s t

• δ(s, d) = sa, da, dc

a b

cd

s t

Remark 1

If P is an s, t−path and δ(S ) is an s, t− cut, then P must have an edge from δ(S ).

17



1.3. IP MODELS

Remark 2

If S ⊆ E contains at least one edge from every s, t − cut, then S contains an
s, t− path.

Proof. Assume, by contradiction, S has an edge from every s, t − cut, but S has no
s, t− path. Let R be the set of vertices reachable from s in S :

R = {u ∈ V : S has an s, u− path}

Then, by assumption, t ̸∈ R since S doesn’t contain an s, t − path. However, δ(R) is
an s, t − cut since s ∈ R, t ̸∈ R. Then, ∃e = (v1, v2) ∈ S , such that e ∈ δ(R) where
v1 ∈ R, v2 ̸∈ R. This contradicts our assumption about R since if v2 is connected to v1, v2
should be in R as well.
Hence, δ(R)∩S = ∅ contradicts our assumption. Therefore, S contains an s, t−path.

Now, we can try to formulate the shortest path optimization problem with a Binary
Integer Program, here, we still use ce to express the weight of edge e.

• Variables: We have one binary variable xe for each edge e ∈ E . When e ∈ P ,
xe = 1, otherwise xe = 0.

• Constraints: We have one constraint for each s, t − cut δ(U ), forcing P to have
an edge from δ(S ). That is,∑

(xe : e ∈ δ(U )) ≥ 1, (∀U ⊆ V , s ∈ U , t ̸∈ U )

Also, we wish all e ∈ E , xe ≥ 0, xe ∈ Z.

Note here, that we don’t need to state that every xe ≤ 1, since it is a minimized
question, if xe > 1, it will cause a greater objective value, which won’t be picked
up.

• Objective function: ∑
(cexe : e ∈ E )

Remark 3

If x is an optimal solution for the above IP and ce > 0 for all e ∈ E , then Sx

contains the edges of the shortest s, t− path.

Now, let’s apply!

Examples

Consider the graph below, we wish to find the shortest s, t− path.

s b

td

5

4

3

2
1
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1.3. IP MODELS

Examples

• Objective function:∑
(cexe : e ∈ E ) = 5xsb + 4xbt + 3xtd + 2xds + xbd

• Constraints:

– U = {s}, δ(U ) = {sb, sd} ⇒ xsd + xsb ≥ 1.

s b

td

5

4

3

2
1

– U = {s, d}, δ(U ) = {sb, db, dt} ⇒ xsb + xdb + xdt ≥ 1.

s b

td

5

4

3

2
1

– U = {s, b}, δ(U ) = {sd, bd, bt} ⇒ xsd + xbd + xbt ≥ 1.

s b

td

5

4

3

2
1

– U = {s, b, d}, δ(U ) = {dt, bt} ⇒ xdt + xbt ≥ 1.

s b

td

5

4

3

2
1

– x ≥ 0, x ∈ Z.
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1.4. NLP MODELS

1.4 NLP models

Definition: NLP

The optimization problem

max︸︷︷︸
ormin

{f(x) : gi(x) ≤︸︷︷︸
or≥,=

bi,∀i = 1, 2, · · · ,m, x ∈ Rm}

is called a Nonlinear program (NLP) if one of f, g1, g2, · · · , gm is not affine
functions.

Examples

• Nonlinear program:

max x1 + x2

s.t. x1 + 3x2 ≤ 4

x1x2 ≤ 2

• Nonlinear program:

max x1 + x2

s.t. x1 + 3x2 ≤ 4
x1

x2

≤ 2

• Nonlinear program:

max x1 + x2

s.t. x1 + 3x2 ≤ 4

5sin(x1) ≤ 4

Remark

Sometimes we can find some constraints are always valid, for example: (x1)
2 ≥ 0

or sin(x1) ≤ 10, but as for definition, we can’t delete them when determining the
type of the optimization problems. (But you can surely delete them when you run
the algorithm for the optimal value)

Due to the complexity of NLP, not too many applications for NLP models are covered in
this course, we just need to recognize the different types of optimization problems.
This is the end of Chapter 1, in this chapter, we introduced the optimization, the three
programs, and their corresponding applications. In Chapter 2, we will focus on the
outcomes of these programs, and on how to solve these programs by using the Simplex
algorithm. I hope your study in C&O250 goes well, see you in the next chapter!
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Chapter 2

Linear Programs

2.1 Possible Outcomes

In this course, when solving an optimization problem, the input will be an LP/IP/NLP
program, and the algorithm (software) outputs the solution.

Definition

All assignment of values to each of the variables is a feasible solution if all the
constraints are satisfied.
An optimization problem is feasible if it has at least one feasible solution. It is
infeasible otherwise.

Definition

• For a maximization problem, an optimal solution is a feasible solution that
maximizes the objective function.

• For a minimization problem, an optimal solution is a feasible solution that
minimizes the objective function.

• An optimization problem may have several optimal solutions, and may also
have no optimal solutions.

Definition

• A maximization problem is unbounded if for every value M , there exists a
feasible solution with objective value greater than M .

• A minimization problem is unbounded if for every value M , there exists a
feasible solution with objective value smaller than M .
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2.1. POSSIBLE OUTCOMES

Theorem: Fundamental Theorem of Linear Programming

There are exactly three possible outcomes for an optimization problem for LP:

• It has an optimal solution.

• It is infeasible.

• It is unbounded.

What does it mean to solve an LP using some algorithms (software)?

• Optimal: return an optimal solution x̄ and a proof (certificate) that x̄ is optimal.

• Infeasible: return a proof (certificate) that LP is infeasible.

• Unbounded: return a proof (certificate) that LP is unbounded.

In the next section, we will explain what exactly the certificate is for each outcome.

Remark

Why did I say the three outcomes are only for LP? Are there any other outcomes
for other types of optimization problems?
The answer is Yes, here is an example, consider:

max x

s.t. x < 1

• This program is none of LP, IP or NLP.

• This program is feasible, since x = 0 is one feasible solution.

• This program is not unbounded since 1 is an upper bound.

• This model has no optimal solution, consider 0 < x̄ < 1 is a feasible solution,
with objective value x̄. Then, we can find that x̄+ 1−x̄

2
is also feasible, with a

greater objective value. Therefore, due to the definition, this program doesn’t
have an optimal solution.

As we listed above, we can’t find any outcomes corresponding to this problem
indeed.
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2.2. CERTIFICATES OF OUTCOMES

2.2 Certificates of Outcomes

2.2.1 Certificate of Optimality

First, due to the definition, an optimal solution is a feasible solution that maximizes/min-
imizes the objective function, and we can’t find any other feasible solution that achieves a
better value. But as for elegance, we can’t try all the possible feasible solutions to verify,
and sometimes we are not able to do that.
Here, a brief certificate of optimality is provided (we will figure this more later):
Given an LP:

max z(x) := c⊤x+m

s.t. Ax = b

x ≥ 0

We wish to make some change to the objective function z, say the new function is z̄:

z(x) = z̄(x) := c̄⊤︸︷︷︸
≤0

x︸︷︷︸
≥0

+n

Then, if we can find some x̄ such that c̄⊤x̄ = 0, then x̄ is optimal, since ∀x:

z̄(x̄) = c̄⊤x̄+ n = n ≥ c̄⊤︸︷︷︸
≤0

x︸︷︷︸
≥0

+n = z̄(x)

Sounds crazy and the gap is huge! Let’s give an example for better understanding.

Example

We have:

max z(x) :=
(
−2 −1 1 0

)
x+ 1

s.t.

(
−1 3 1 0
−2 6 0 1

)
x =

(
4

5

)
x ≥ 0

we can find that

z(x) =
(
−1 −4 0 0

)
x+

(
−1 3 1 0

)
x︸ ︷︷ ︸

=4, by first constraint

+1 =
(
−1 −4 0 0

)︸ ︷︷ ︸
≤0

x︸︷︷︸
≥0

+5 := z̄(x)

We claim that x̄ =
(
0 0 4 5

)⊤
is a feasible solution of value 5 (easy to prove),

and: (
−1 −4 0 0

)
x̄ = 0

Thus, we conclude that x̄ is an optimal solution, and this LP’s outcome is optimal.

On the next page, we will introduce the Certificate of Optimality.
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2.2. CERTIFICATES OF OUTCOMES

Start with the example:

Example

We have:

max z(x) := (−1, 3,−5, 2, 1)x− 3

s.t.

(
1 −2 1 0 2
0 1 −1 1 3

)
x =

(
2

4

)
, x ≥ 0

We wish to construct a new z̄(x) := c̄⊤x+n, such that c̄⊤ ≤ 0. Now, by multiplying
the first constraint of the LP by -1, the second by 2, and by adding the two
constraints together, we obtain:

(−1, 2)︸ ︷︷ ︸
y⊤

(
1 −2 1 0 2
0 1 −1 1 3

)
x = (−1, 2)︸ ︷︷ ︸

y⊤

(
2

4

)

and after simplifying, we have

(−1, 4,−3, 2, 4)x = 6 ⇔ −(−1, 4,−3, 2, 4)x+ 6 = 0

Let z̄(x) := z(x) +−(−1, 4,−3, 2, 4)x+ 6︸ ︷︷ ︸
0

= (0,−1,−2, 0,−3)︸ ︷︷ ︸
c̄⊤≤0

x+3. We can find a

feasible solution x̄ = (2, 0, 0, 4, 0)⊤ such that c̄⊤x̄ = 0.
Then, we can conclude that x̄ is the optimal solution.

Definition

In our example, the scalars vector y⊤ = (−1, 2) is the Certificate of Optimality.

But still, I believe it is a bit confusing:

• How can we find the scalars vector y⊤ as the certificate of optimality?

• How can we find z̄(x)? Is there exists a method to help find it?

• How can we find the optimal solution x̄? Is there exists a method to help find it?

The answer is Yes, we do have some methods for it, and we will introduce them soon!
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2.2. CERTIFICATES OF OUTCOMES

2.2.2 Certificate of Infeasibility

One way is trying to convert Ax = b into RREF, if the RREF of Ax = b is unsolvable,
then this LP is infeasible as well. But we missed the constraint x ≥ 0 here, we may
have some cases in which Ax = b is solvable without constraints x ≥ 0, and the LP is
infeasible.

Example

x1 + x2 = −1, x ≥ 0

We only need to give a certificate of infeasibility when Ax = b is solvable, but the LP is
infeasible. For the case Ax = b unsolvable, just state how [A|b] is inconsistent.

Theorem: Farka’s Lemma

There is no solution to Ax = b, x ≥ 0 if there exists a y such that:

y⊤A ≥ 0, y⊤b < 0

Example

Consider the LP:

max (3, 4,−1, 2)⊤x

s.t.

(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =

(
6

2

)
︸︷︷︸

b

x ≥ 0

Here, we can construct a y⊤ :=
(
−1 2

)
, and then we have:

(
−1 2

)︸ ︷︷ ︸
y⊤

(
3 −2 −6 7
2 −1 −2 4

)
︸ ︷︷ ︸

A

x =
(
−1 2

)︸ ︷︷ ︸
y⊤

(
6

2

)
︸︷︷︸

b(
1 0 2 1

)︸ ︷︷ ︸
≥0

x︸︷︷︸
≥0

= −2︸︷︷︸
<0

Suppose there’s a solution x̄, then we have(
1 0 2 1

)︸ ︷︷ ︸
≥0

x̄︸︷︷︸
≥0

= −2︸︷︷︸
<0

Which makes no sense, since the LHS is non-negative and the RHS is negative.
Therefore, there’s no solution to this LP, which means this LP is infeasible. More-
over, here, the y⊤ we constructed is the certificate of infeasibility

• How did we find the y⊤ for the certificate? Is there exists a method to help find it?

The answer is Yes! We do have some methods for it, and we will introduce them soon!
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2.2. CERTIFICATES OF OUTCOMES

2.2.3 Certificate of Unboundedness

In this section, we will only focus on the certificate of unboundedness of maximization
optimization problems since the minimization one is similar.
Recall the definition of unboundedness, a maximization problem is unbounded if for
every value M , there exists a feasible solution with objective value greater than M .

Remark

Our idea to prove the LP is unbounded is to construct a family of feasible solutions
x(t), ∀t ≥ 0, and show that as t goes to infinity, the value of the objective function
goes to infinity, that is, the LP

max{c⊤x : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b,Ar = 0, c⊤r > 0

so that we can rewrite the LP as:

max c⊤x̄+ t︸︷︷︸
≥0

c⊤r︸︷︷︸
>0

s.t. Ax̄︸︷︷︸
b

+ Ar︸︷︷︸
0

= b

Now, as t goes to infinity, the objective value will go to infinity as well, which shows
that this LP is unbounded. Moreover, here, the pair (x̄, r) is the Certificate of
Unboundedness.

Example

We have the LP

max
(
−1 0 0 1

)︸ ︷︷ ︸
c⊤

x

s.t.

(
−1 −1 1 0
−2 1 0 1

)
︸ ︷︷ ︸

A

x =

(
2

1

)
︸︷︷︸

b

, x ≥ 0

By solving the matrix equation Ax = b using some EROs, we can obtain:

x(t) :=
(
0 0 2 1

)⊤︸ ︷︷ ︸
x̄

+t
(
1 0 1 2

)⊤︸ ︷︷ ︸
r

And note here t must forcibly be non-negative since if it is negative, x1 = t < 0
which contradicts x ≥ 0. Now, we check:

• x(t) is feasible for all t ≥ 0: Ax(t) = A(x̄ + tr) = Ax̄ + tAr = b indeed, and
x(t) =

(
t 0 2 + t 1 + 2t

)
≥ 0 as t ≥ 0. (More on next page)
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2.3. STANDARD EQUALITY FORMS

Example

• c⊤x → ∞ when t → ∞:

c⊤x(t) = c⊤x̄+ t c⊤r︸︷︷︸
1

= c⊤x̄︸︷︷︸
fixed

+ t︸︷︷︸
∞

→ ∞

We now have a clearer realization of the certificate of each type of outcome, now, we can
start to fill the gap left before!

2.3 Standard Equality Forms

Definition

An LP is in Standard Equality Form (SEF) if

• It is a maximization problem.

• x ≥ 0.

• All constraints are equality constraints except the x ≥ 0.

Example

• This is an LP in SEF:

max x1 + x2 + 17

s.t. x1 − x2 = 2

x1, x2 ≥ 0.

• This LP is not in SEF since x2 ≥ 0 is missed:

max x1 + 11x2 + 9

s.t. x1 − 2x2 = 3

x1 ≥ 0.

Remark

For this LP

max x1 + x2 + 17

s.t. x1 − x2 = 0

x1 ≥ 0.

Though x2 ≥ 0 can be implied by the constraint, it is not given explicityly, so
this LP is not in SEF. Moreover, we call the xi free if there’s no constraint xi ≥ 0.
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2.3. STANDARD EQUALITY FORMS

Definition

We say two LPs (P) and (Q) are equivalent if

• (P) is infeasible implies (Q) is infeasible.

• (P) is unbounded implies (Q) is unbounded.

• Can construct an optimal solution of (P) from the optimal solution of (Q).

• Can construct an optimal solution of (Q) from the optimal solution of (P).

Remark

Every LP is equivalent to an LP in SEF.

Here are some methods to convert an LP into SEF.

• How do we change a minimum problem into a maximum problem?

Answer: Take the opposite sign of the objective function and find its maximum.

Example

Consider this minimum problem’s objective function:

min (x1 + x2 − 3x3 + 9) → −max (−x1 − x2 + 3x3 − 9)

• How do we replace an inequality with an equality?

Answer: Add/minus a positive variable to fill the difference.

Example

Consider these constraints

x1 + x2 − 4x3 ≤ 7
2x1 − x2 + x3 ≥ 10

x1, x2, x3 ≥ 0
⇒

x1 + x2 − 4x3 + s = 7
2x1 − x2 + x3 − t = 10

x1, x2, x3, s, t ≥ 0

• What if we have free variables?

Answer: The idea is, any number can be expressed by the difference of two non-
negative numbers. So if xi is free, we introduce x

+
i , x

−
i ≥ 0, such that xi = x+

i −x−
i .

Example

Consider these constraints

x1 + x2 − 4x3 = 7

x1, x2 ≥ 0

⇒ x1 + x2 − 4(x+
3 − x−

3 ) = 7

x1, x2, x
+
3 , x

−
3 ≥ 0
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2.4. BASIS

2.4 Basis

Notation let B be a subset of column indices, then AB is a columns sub-matrix of A
indexed by set B . Ai denotes the columns i of A.

Definition

Let B be a subset of column indices, B is a basis if AB is invertible (non-sigular).

Remark

Some properties of basis:

• Max number of independent columns = Max number of independent rows.

• B is a basis if and only if B is a maximal set of independent columns of A.

• Not every matrix has basis, consider A =

(
0 0
0 0

)
, then all AB are singular.

Example

Given A =

(
1 2 3
1 5 3

)
, the possible subset of column indices are:

{1, 2}, {1, 3}, {2, 3}. (We wish AB be square, as a prerequisite to be invertible).

• B = {1, 2}, in this case AB =

(
1 2
1 5

)
, and using determinant we have:

1× 5− 2× 1 ̸= 0, therefore, B = {1, 2} is a basis for A.

• B = {1, 3}, in this case AB =

(
1 3
1 3

)
, and using determinant we have:

1× 3− 3× 1 = 0, therefore, B = {1, 3} is a not a basis for A.

• B = {2, 3}, in this case AB =

(
2 3
5 3

)
, and using determinant we have:

2× 3− 3× 5 ̸= 0, therefore, B = {2, 3} is a basis for A.

Definition

• x is a basic solution (bs) for basis B if

– Ax = b.

– xi = 0 for all i ̸∈ B .

• x is a basic feasible solution (bfs) for basis B if

– x is a basic solution for basis B .

– x ≥ 0

And in this case, we say B is a feasible basis.
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2.4. BASIS

Example

How to find a basic solution for(
1 0 1 −1
0 1 1 1

)
︸ ︷︷ ︸

A

x =

(
2

2

)
︸︷︷︸

b

When B = {1, 4}?
Solution: We have:(

2

2

)
=

(
1 0 1 −1
0 1 1 1

)
x

= x1

(
1

0

)
+ x2︸︷︷︸

0

(
0
1

)
+ x3︸︷︷︸

0

(
1
1

)
+ x4

(
−1
1

)

=

(
1 −1
0 1

)(
x1

x4

)
Since AB is invertible, multiplying A−1

B on both sides gives:(
1 −1
0 1

)−1(
2

2

)
=

(
1 −1
0 1

)−1(
1 −1
0 1

)(
x1

x4

)
(
4

2

)
=

(
x1

x4

)
So the basic solution x = (4, 0, 0, 2)⊤, since x ≥ 0, it is also a basic feasible solution.

Remark

A basic solution can be the basic solution for more than one basis.

Remark

If x is a basic solution for basis B , xi = 0 for all i ̸∈ B , what about xj, for j ∈ B ,
do all xj ̸= 0?
The answer is No, xj can be zero sometimes.

Example

Consider Ax = b,

A :=

4 1 −1 0
5 0 8 0
7 0 −4 1

 , b :=

 3
13
3

 ,B1 = {1, 2, 3},B2 = {1, 3, 4}

Then, we can easily show that AB1 and AB2 are both invertible, and x = (1, 0, 1, 0)⊤

is a basic feasible solution for both B1,B2, with x2 = 0, 2 ∈ B1. This example proves
our remarks above once.
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Remark

Consider Ax = b and a basis B of A, then there exists a unique basic solution
x for B . Columns of AB and elements of xB are ordered by B .

Proof.

b = Ax =
∑
j

Ajxj

=
∑
j∈B

Ajxj +
∑
j ̸∈B

Aj xj︸︷︷︸
0

=
∑
j∈B

Ajxj = ABxB .

Since B is a basis, it implies AB is invertible, and hence, xB = A−1
B b.

Definition

For all indexes of A, ̸∈ B , we say the set of these elements N .

2.5 Canonical Forms

Consider the problem (P) in SEF:

max{c⊤x+m : Ax = b, x ≥ 0}
Definition

Let B be a basis of A, then (P) is in canonical form for B if

• AB = I .

• cj = 0 for all j ∈ B

Also, we say B is an optimal basis if and only if c⊤ ≤ 0.

Example

This is an LP in Canonical Form for B = {1, 2}:

max (0, 0, 2, 4)︸ ︷︷ ︸
c⊤

x

s.t.

(
1 0 1 −1
0 1 1 2

)
︸ ︷︷ ︸

A

x =

(
1

2

)
︸︷︷︸

b

, x ≥ 0

We can verify:

• AB =

(
1 0
0 1

)
= I2.

• c1 = c2 = 0.
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2.5. CANONICAL FORMS

Remark

We can always rewrite an LP in Canonical Form on any basis B .

Here are the steps with an example: consider, we have the LP model:

max (4, 5, 2, 3,−2)︸ ︷︷ ︸
c⊤

x+ 10

s.t.

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2


︸ ︷︷ ︸

A

x =

2
6
3


︸ ︷︷ ︸

b

x ≥ 0

Now, we bring this LP into canonical form for the basis {1, 2, 4}, the steps are below:

P1. Replace Ax = b by A
′
x = b

′
with A

′
B = I1 2 0 0 3

1 1 1 0 8
1 5 0 1 2

x =

2
6
3


↔

1 2 0
1 1 0
1 5 1

−11 2 0 0 3
1 1 1 0 8
1 5 0 1 2

x =

1 2 0
1 1 0
1 5 1

−12
6
3


↔

−1 2 0
1 −1 0
−4 3 1

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2

x =

−1 2 0
1 −1 0
−4 3 1

2
6
3


↔

1 0 2 0 13
0 1 −1 0 −5
0 0 3 1 14

x =

10
−4
13


P2. Replace c⊤x by c̄⊤x+ z̄ with c̄B = 0 (z̄ is a constant)

Step 1. construct a new objective function by

• multiplying constraint 1 by y1

• multiplying constraint 2 by y2

• multiplying constraint 3 by y3, and

• adding the result constraints to the objective function.

Step 2. choose y1, y2, y3 to get c̄B = 0, (which means c̄⊤B = 0 too).
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We have:

0 = −(y1, y2, y3)

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2

x+ (y1, y2, y3)

2
6
3


z = (4, 5, 2, 3,−2)x+ 10

→ z =

(4, 5, 2, 3,−2)− (y1, y2, y3)

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2


︸ ︷︷ ︸

c̄⊤

x+ (y1, y2, y3)

2
6
3


︸ ︷︷ ︸

z̄

+10

0 = c̄⊤B = (4, 5, 3)− (y1, y2, y3)

1 2 0
1 1 0
1 5 1


↔(y1, y2, y3)

1 2 0
1 1 0
1 5 1

 = (4, 5, 3)

↔

y1
y2
y3

 = (4, 5, 3)

1 2 0
1 1 0
1 5 1

−1

=

−11
12
3


Hence, we choose (y1, y2, y3) = (−11, 12, 3) and

z =

(4, 5, 2, 3,−2)− (y1, y2, y3)

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2

x+ (y1, y2, y3)

2
6
3

+ 10

= (0, 0,−10, 0,−71)x+ 69

Therefore, our final Canonical Form is:

max(0, 0,−10, 0,−71)x+ 69

s.t.

1 0 2 0 13
0 1 −1 0 −5
0 0 3 1 14

x =

10
−4
13

 , x ≥ 0

Wow, this is complex, however, it does have a formula! (Showing on next page)

Remark

For any invertible matrix M , we have:

(M⊤)−1 = (M−1)⊤ =: M−⊤
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2.5. CANONICAL FORMS

Remark

Consider converting this LP (P ) into canonical form (P
′
)with basis B :

(P )

max c⊤x+m

s.t. Ax = b

x ≥ 0

(P
′
)

max [c⊤ − y⊤A]︸ ︷︷ ︸
c̄⊤

x+ y⊤b+m

s.t. A−1
B A︸ ︷︷ ︸
A′

x = A−1
B b︸ ︷︷ ︸
b′

x ≥ 0

where y = A−⊤
B cB .

Example

Consider, we have the LP model:

max (4, 5, 2, 3,−2)︸ ︷︷ ︸
c⊤

x+ 10︸︷︷︸
m

s.t.

1 2 0 0 3
1 1 1 0 8
1 5 0 1 2


︸ ︷︷ ︸

A

x =

2
6
3


︸ ︷︷ ︸

b

, x ≥ 0

Now, we bring this LP into canonical form for the basis {1, 2, 4} using the remark:

y = A−⊤
B cB =

1 2 0
1 1 0
1 5 1

−⊤4
5
3

 =

−1 2 0
1 −1 0
−4 3 1

⊤4
5
3

 =

−11
12
3


y⊤ =

(
−11 12 3

)
, y⊤A =

(
4 5 12 3 69

)
, y⊤b+m = 69

A−1
B A =

1 0 2 0 13
0 1 −1 0 −5
0 0 3 1 14

 ,A−1
B b =

10
−4
13

 .

Therefore, our final Canonical Form is:

max(0, 0,−10, 0,−71)x+ 69

s.t.

1 0 2 0 13
0 1 −1 0 −5
0 0 3 1 14

x =

10
−4
13

 , x ≥ 0
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2.5. CANONICAL FORMS

Another version of the converting formula is: (just deleted the use of y and y⊤)

Remark

Consider converting this LP (P ) into canonical form (P
′
)with basis B :

(P )

max c⊤x+m

s.t. Ax = b

x ≥ 0

(P
′
)

max [c⊤ − c⊤BA
−1
B A]x+ c⊤BA

−1
B b+m

s.t. A−1
B Ax = A−1

B b

x ≥ 0

So what you have to calculate is:

E1 := A−1
B

E2 := E1A E3 := E1b

E4 := c⊤BE2 E5 := c⊤BE3

And the (P
′
) now can be written as:

max (c⊤ − E4)x+ E5 +m

s.t. E2x = E3

x ≥ 0

Remark

Recall that for the LP in canonical form for

B : max{c⊤x+m : Ax = b, x ≥ 0}

We say B is an optimal basis if and only if c⊤ ≤ 0.
Question: Provide an LP of the form max{c⊤x : Ax = b, x ≥ 0} and basis B ,
where B is not optimal basis, and the basic solution x̄ for B is an optimal solution.
Answer: Seems really counter-intuitive, but it does exist. Consider:

max{(1, 0)x :
(
1 1

)
x = 0, x ≥ 0},B = {2}

This LP is in canonical form for B , with c⊤ ̸≤ 0, but the corresponding basic
feasible solution x̄ = (0, 0) is an optimal solution. (Since it is the only feasible
solution for this LP).

35



2.6. SIMPLEX-OPTIMALITY

2.6 Simplex-Optimality

Consider the LP:

max (0, 1, 3, 0)x

s.t.

(
1 1 2 0
0 1 1 1

)
x =

(
2

5

)
, x ≥ 0

and B = {1, 4}, then

• AB is invertible → B is a basis.

• AB = I2 and cB = 0 → LP is in canonical form for B .

• x̄ = (2, 0, 0, 5)⊤ is a basic feasible solution for basis B .

So how do we find a better solution?
The idea is to pick k ̸∈ B such that ck > 0, set xk = t ≥ 0 as large as possible and keep
all other non-basic variables at 0. So here, we pick k = 2, set x2 = t ≥ 0, keep x3 = 0.
We want to choose basic variables such that Ax = b still holds.(

1 1 2 0
0 1 1 1

)
x =

(
2

5

)
⇒

(
1 1 2 0
0 1 1 1

)
(x1, t, 0, x4)

⊤ =

(
2

5

)
⇒x1 = 2− t ≥ 0 → t ≤ 2
x4 = 5− t ≥ 0 → t ≤ 5

Thus, the largest possible t = min{2, 5} = 2, and the new feasible solution is x =
(2− t, t, 0, 5− t)⊤ = (0, 2, 0, 3)⊤. The new feasible solution is a basic feasible solution for
basis B = {2, 4}. Now, convert this LP into canonical form with new basis B = {2, 4}:
(P

′
)

max (−1, 0, 1, 0)x+ 2

s.t.

(
1 1 2 0
−1 0 −1 1

)
x =

(
2

3

)
, x ≥ 0

Continue picking k ̸∈ B such that ck > 0, set xk = t ≥ 0 as large as possible and keep all
other non-basic variables at 0. So here, we pick k = 3, set x3 = t ≥ 0, keep x1 = 0. We
want to choose basic variables such that Ax = b still holds.(

1 1 2 0
−1 0 −1 1

)
x =

(
2

3

)
⇒

(
1 1 2 0
−1 0 −1 1

)
(0, x2, t, x4)

⊤ =

(
2

3

)
⇒ x2 = 2− 2t ≥ 0 → t ≤ 1
x4 = 3 + t ≥ 0 → t ≤ ∞ no upper bound

Thus, the largest possible t = min{1,∞} = 1, and the new feasible solutino is x =
(0, 0, 1, 4)⊤. The new feasible solution is a basic feasible solution for basis B = {3, 4}.
Now, convert this LP into canonical form with new basis B = {3, 4}:
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2.6. SIMPLEX-OPTIMALITY

(P ”)

max (−3/2,−1/2, 0, 0)︸ ︷︷ ︸
c̄⊤

x+ 3

s.t.

(
1/2 1/2 1 0
−1/2 1/2 0 1

)
x =

(
1

4

)
, x ≥ 0

Since we have : c̄⊤ ≤ 0, and we can indeed find a feasible solution x̄ = (0, 0, 1, 4)⊤, c̄⊤x̄ =
0, we say this LP is optimal wth optimal solution x̄, with optimal basis B̄ = {3, 4}.

Definition

• The algorithm we applied above is called Simplex Algorithm.

• During the example above, we know that the essence of this algorithm is to
let an element leave the basis while letting an element enter the basis. In our
example’s first step, 1 leaves and 2 enters the basis, so the new basis is {2, 4}.

Now, we can find the Certificate of Optimality!

Definition

Given an LP:

max z(x) := c⊤x+m

s.t. Ax = b

x ≥ 0

After Simplex, we can find the optimal basis B̄. The Certificate of Optimality
is then the scalars vector defined as:

y⊤ := c⊤B̄A
−1
B̄

Remark

Wait, is the Simplex above really correct? During Simplex, we said the idea is to
let one xi, i ∈ B that has been forcibly zero leave, and let another element in, but
what if we have more than one choice of entering or leaving? This is an important
question, if we ignore this and choose the ck randomly, we might fall into an infinity
loop! To solve this, we introduce Bland’s Rule.

Theorem: Bland’s Rule (Smallest-subscript rule)

If we have a choice for element entering/leaving, pick the one with the smallest
index.

Remark

Still not the end! What if this LP is infeasible or unbounded? Seems like the
current version algorithm can’t handle it, we will complete it in a few sections
later.
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2.7. SIMPLEX-UNBOUNDEDNESS

2.7 Simplex-Unboundedness

Consider the LP:

max (0,−4, 3, 0, 0)x

s.t.

1 −2 1 0 0
0 5 −3 1 0
0 4 −2 0 1

x =

1
1
2

 , x ≥ 0

with B = {1, 4, 5} as a feasible basis. Follow the Simplex algorithm we introduced:
Solution: Pick k = 3 ̸∈ B and let x3 = t, x2 = 0, then:x1

x4

x5

 =

1
1
2

− t

 1
−3
−2


with t = min{1,∞,∞} = 1, thus x1 = 0 → 1 leaves the basis, 3 enter the basis.
→ B = {3, 4, 5}, our LP in canonical form with this basis is:

max (−3, 2, 0, 0, 0)x+ 3

s.t.

1 −2 1 0 0
3 −1 0 1 0
2 0 0 0 1

x =

1
4
4

 , x ≥ 0

Pick k = 2 ̸∈ B and set x2 = t, x1 = 0, then:x3

x4

x5

 =

1
4
4

− t

−2
−1
0


With t = min{∞,∞,∞}. Wait, can we choose the minimum number from three infinity?
The answer is No, and here, back to the feasible solution we constructed:

x =


0
t

1 + 2t
4 + t
4

 =


0
0
1
4
4


︸ ︷︷ ︸

x̄

+t


0
1
2
1
0


︸ ︷︷ ︸

r

Recall the certificate of unboundedness:

Definition

The LP
max{c⊤x : Ax = b, x ≥ 0}

is unbounded if we can find x̄ and r such that

x̄ ≥ 0, r ≥ 0, Ax̄ = b,Ar = 0, c⊤r > 0

And the x̄, r we constructed can satisfy these conditions well! Therefore, we can conclude
that this LP is unbounded. So in general, what is the key point we found the LP
unbounded? Back to the procedure, Ak ≥ 0 is essential for our construction.
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2.8. SIMPLEX ALGORITHM PROCEDURE

2.8 Simplex Algorithm Procedure

Till now, we’ve solved the optimality and unboundedness, what about the Infeasibility?
Unfortunately, only Simplex Algorithm can’t detect all situations of Infeasibility with a
certificate, but, we will introduce a method named Two-phase Simplex to handle that,
before that, we may assume every LP that has been applied to Simplex Algorithm is
feasible. In this section, we will describe the complete procedure of Simplex Algorithm:

Definition

Input: A feasible LP and a feasible basis B .Start

• Rewrite LP into canonical form for basis B .

• Obtain x̄ as a basic feasible solution for basis B .

cN ≤ 0?

Return:

• LP is optimal with x̄.

• y⊤ = c⊤BA
−1
B is certificate.

• Pick the smallest k ̸∈ B such that ck > 0.

• Set xk = t ≥ 0, xN/k = 0, xB = b− tAk.

Ak ≤ 0

Rewrite x as x = x̄+ tr.
—————————————
Return:

• LP is unbounded.

• x̄, r are the certificates.

• Pick the largest t with condition xB = b− tAk ≥ 0.

• Pick the smallest r such that r ∈ B , xr = br−tAkr = 0.

• Change basis B , with element k enter, r leave.

End

True

False

True

False

Remark

Recall that N is the set of all indexes of A that not ∈ B .

A =
(
a b c d e

)
,B = {1},N = {2, 3, 4, 5}
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2.9. TWO-PHASE SIMPLEX (CERTIFICATE OF INFEASIBILITY)

2.9 Two-phase Simplex (Certificate of Infeasibility)

In this section, we will extend our Simplex algorithm, and after this section, we can:

• Determine whether an LP is feasible or not.

• Find the basic feasible solution for a feasible LP.

• Give the certificate of infeasibility of an infeasible LP.

Still, we start with an example:

Example

Consider the LP (P1):

max (2,−1, 2)x

s.t.

(
−1 −2 1
1 1 1

)
x =

(
−1
3

)
, x ≥ 0

Is the (P1) feasible? If so, find a basic feasible solution.
Solution: We follow the following steps to find the feasible solution:

• Since b has a negative coordinate, we multiply the corresponding equations
by minus 1 on both sides and then we can obtain the new constraints:(

1 2 −1
1 1 1

)
x =

(
1

3

)
, x ≥ 0

• Since we have two equational constraints, we set up two auxiliary variables,
x4, x5. We form a new LP (P2) that is guaranteed to be feasible:

max (0, 0, 0,−1,−1)x

s.t.

(
1 2 −1 1 0
1 1 1 0 1

)
x =

(
1

3

)
, x ≥ 0, x ∈ R5

since (0, 0, 0, 1, 3) is a basic feasible solution for basis {4, 5}.

• Recall that we required the LP to be feasible when applying Simplex, so now,
we run Simpex on (P2), which gives:

– (P2) is optimal with basis {1, 3}, basic feasible solution (2, 0, 1, 0, 0)⊤.

– The optimal value is 0.

• Note that x4 = x5 = 0 in the basic feasible solution we computed above,
deleting x4, x5 gives a vector: x̄ = (2, 0, 1)⊤, which is a basic feasible solution
for (P1) with basis {1, 3}.

• Now we can conclude (P1) is feasible, with basic feasible solution x̄ =
(2, 0, 1)⊤ with basis {1, 3}.

The method we used above is called Two-phase simplex.
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2.9. TWO-PHASE SIMPLEX (CERTIFICATE OF INFEASIBILITY)

In this page, we will provide a procedure of two-phase simplex:

Definition

• Step 1: Check if the equality constaints are feasible. We may do this by
converting the Ax = b into RREF. If it is inconsistent, then LP is infeasible,
we stop the algorithm, and no certificate of infeasibility is needed.

• Step 2: If Ax = b is consistent, there may be redundant constriants. Remove
those so that A has full row rank (all rows are linearly independent). This
will ensure that we can find a basis (of columns).

• Step 3: Use row operations to make b ≥ 0 (like multiplying minus one on
both sides of the equation)

• Step 4: We introduce some # of new auxiliary variables (in general, as many
as the number of rows). And then augment A with the identity matrix I .

• Step 5: We use the Simplex algorithm to try to find a feasible solution to
the original LP. If the max is 0, we get a feasible solution. Also, if the LP
is feasible, we can augment it by letting all the augmented variables be 0,
to get a feasible solution for the auxiliary problem, with value 0. Since the
objective function vector is ≤ 0, the auxiliary problem is bounded, and since
it is feasible, Simplex terminates with an optimal solution. This tells us if the
original LP is feasible or not: If optimal value < 0 ⇒ (P1) is infeasible,
otherwise (P1) is feasible.

Remark

• The auxiliary LP is always feasible and optimal since it is bounded by 0.

• By running Simplex on the auxiliary LP, if the optimal value < 0, then the
original LP is infeasible, and the certificate of infeasibility can be derived from
the optimal basis of the auxiliary LP. Detailedly, to obtain the certificate y⊤:

– Get Ā−⊤
B c̄B , where Ā, c̄ are the constraints matrix and objective of orig-

inal auxiliary LP.

– Flip the row’s sign in Ā−⊤
B c̄B if we fliped such row’s sign to let b ≥ 0.

Finally! We filled the gap we left before! In the later content, we will extend the SEF
into the form Ax ≤ b, and combine the graphs, geometry etc.
In the next few pages, we will provide a complete procedure to determine the type of
outcome of an LP, with a certificate. We will also provide some examples of using the
Two-phase Simplex Algorithm.
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2.9. TWO-PHASE SIMPLEX (CERTIFICATE OF INFEASIBILITY)

Definition

Input: An LP.Start

Rewrite this LP into SEF, max{c⊤x : Ax = b, x ≥ 0}

[A|b] consistent?Return: LP is infeasible.

• Make sure the rows of [A|b] are linearly independent, one way is to
turn it into RREF: [A

′|b′ ].

• Let Rowi = −Rowi if b
′
i < 0, define S = {i : b′i < 0}.

——————————————————————————————
The new LP is: max{c⊤,A”x = b”, x ≥ 0}, with b ≥ 0,A” ∈ Rm×n.
——————————————————————————————

• Define the auxiliary LP:

max (0, 0, · · · , 0︸ ︷︷ ︸
#n

,−1,−1, · · · ,−1︸ ︷︷ ︸
#m

)x

s.t. [A”|Im]x = b”, x ≥ 0, x ∈ Rm+n

• Run Simplex on auxiliary LP with basis {n+1, n+2, · · · , n+m}:

– The auxilary LP is optimal with basis B̄ .

– Denote the auxiliary LP’s optimal value as z̄.

z̄ = 0?

The original LP is infeasible.
——————————————————————–

• ȳ = (A”
B̄
)−⊤(0, 0, · · · , 0︸ ︷︷ ︸

#n

,−1,−1, · · · ,−1︸ ︷︷ ︸
#m

)⊤
B̄

• Obtain y by flipping the sign of ȳi, where i ∈ S .

——————————————————————–
y⊤ is the certificate of infeasibility.

The original LP is feasible.
————————————
Run Simplex on LP with B̄ .

This LP is infeasible
with certificate y⊤.

This LP is Optimal
with certificate y⊤.

This LP is Unboundede with
certificate x̄, r.

Two possible
outcomes

False

True

False True
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2.9. TWO-PHASE SIMPLEX (CERTIFICATE OF INFEASIBILITY)

Example

Determine the outcome of the following LP:

max (−1,−4,−4,−2)x

s.t.

2 2 3 3
2 0 3 2
1 −1 1 0


︸ ︷︷ ︸

A

x =

 4
2
−1


︸ ︷︷ ︸

b

, x ≥ 0

Solution:

Step 1: Because this LP is already in SEF, no operation is needed here.

Step 2: Since [A|b] is consistent, we can go to the next step.

Step 3: b3 = −1 is negative, so we multiply the last row by -1.

Step 4: Define the auxiliary LP:

max (0, 0, 0, 0,−1,−1,−1)x

s.t.

 2 2 3 3 1 0 0
2 0 3 2 0 1 0
−1 1 −1 0 0 0 1


︸ ︷︷ ︸

[A|I3]

x =

4
2
1


︸ ︷︷ ︸

b”

, x ≥ 0, x ∈ R7

Step 5: x̄ = (0, 0, 0, 0, 4, 2, 1)⊤ is a basic feasible solution for basis {5, 6, 7}, we now
run Simplex on the auxiliary LP above with basis {5, 6, 7}.

Step 6: The procedure of Simplex. (We skip the steps here since we’re familiar
with that, but in Assignments, and Exams, you still have to write it)

Step 7: The last step of Simplex gives us the LP with optimal basis B̄ = {2, 4, 7}:

max (−1/2, 0,−1/4, 0,−3/2,−1/4, 0)x− 1/2

s.t.

−1/2 1 −3/4 0 1/2 −3/4 0
1 0 3/2 1 0 1/2 0

−1/2 0 −1/4 0 −1/2 3/4 1

x =

1/2
1
1/2

 , x ≥ 0, x ∈ R7

But the optimal value is −1
2
< 0, which means the original LP is infeasible.

Step 8: ȳ = (AB̄)
−⊤(0, 0, 0, 0,−1,−1,−1)⊤

B̄
=

2 3 0
0 2 0
1 0 1

−⊤  0
0
−1

 =

 1/2
−3/4
−1

.

Step 9: Remind that we flipped the third row in Step 3, so we have to flip back:
y = (1/2,−3/4, 1)⊤, then we can get our certificate y⊤ = (1/2,−3/4, 1).

Step 10: In conclusion, this LP is infeasible, with certificate y⊤ = (1/2,−3/4, 1).

(* Indeed, we have y⊤A = (1/2, 0, 1/4, 0) ≥ 0 and y⊤b = −1/2 < 0 as expected.)
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2.10. STANDARD INEQUALITY FORM

2.10 Standard inequality Form

In all the sections above, we’re deliberately using SEF, and sometimes even if it is an
inequality, we convert it into an equation. But actually, working with LP in Standard
Inequality Form is very convenient too.

Definition

The LP with the form

max c⊤x+m

s.t. Ax ≤ b

x ≥ 0

is in Standard Inequality Form (SIF).

Remark

We can replace Ax = b in SEF by:

Ax ≤ b,−Ax ≤ −b

Example

Convert the following LP in SEF into SIF:

max (1,−1,−9)x

s.t.

(
1 2 8
9 10 −1

)
x =

(
1
−2

)
, x ≥ 0

Solution:

max (1,−1,−9)x

s.t.


1 2 8
−1 −2 −8
9 10 −1
−9 −10 1

x ≤


1
−1
−2
2

 , x ≥ 0

Moreover, you can even put x ≥ 0 in:

max (1,−1,−9)x

s.t.



1 2 8
−1 −2 −8
9 10 −1
−9 −10 1
−1 0 0
0 −1 0
0 0 −1


x ≤



1
−1
−2
2
0
0
0


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2.10. STANDARD INEQUALITY FORM

Definition

For an optimal problem, the feasible region is the set of all feasible solutions.

Let’s combine this with geometry:

Example

The feasible region of the following LP is:

max (1,−1)x

s.t.

1 1
1 0
0 1

x ≤

3
2
2

 , x ≥ 0

1 2 3

1

2

3

x1

x2

Note that each constraint (including x ≥ 0) defines a half-plane, and the feasible
region is the intersection of these half-planes. The situation is similar in higher
dimensions, but due to the complexity of higher dimensions, we only show the
example of R2.

Definition

• The intersection of finate half-planes is also called polyhedron.

• A polyhedron is polytope if it is bounded.

• The hyperplane is the set of solutions to a single linear equation.

• The half-space is the set of solutions to a single linear inequality.

Mathematically:

• {x : Ax ≤ b} is a polyhedron.

• {x : Aix = bi} is a hyperplane.

• {x : Aix ≤ bi} is a half-space.
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2.10. STANDARD INEQUALITY FORM

Definition

Let S , S
′ ⊆ Rn, then S

′
is a translate of S if there exists p ∈ Rn and

S
′
= {s+ p : s ∈ S}

Example

Let α ̸= 0 be a vector and β a real number, and:

• let:
H := {x : α⊤x = β},H0 := {x : α⊤x = 0}

Then, H is a translate of H0, and H0 is a translate of H as well.

• let:
F := {x : α⊤x ≤ β},F0 := {x : α⊤x ≤ 0}

Then, F is a translate of F0, and F0 is a translate of F as well.

Definition

Let x1, x2 ∈ Rn, then the line through x1, x2 is defined as:

L := {x = λx1 + (1− λ)x2 : λ ∈ R}

and the line segment between x1 and x2 is:

S := {x = λx1 + (1− λ)x2 : λ ∈ R, 0 ≤ λ ≤ 1}

Definition

Given two points x, y ∈ Rn, x ̸= y, the line segment joining x and y in the set
{ λx+ (1− λ)y︸ ︷︷ ︸
convex combination of x,y

: 0 ≤ λ ≤ 1}, we saya set S ⊂ Rn is convex if for every pair

of points x, y ∈ S, x ̸= y, the line segment joining x and y also is contained in S .

Remark

If a set S ⊆ Rn is a polyhedron, then it is convex.

Proof. Suppose a polyhedron S ⊆ Rn is specified by inequalities Ax ≤ b. Suppose,
a, a

′ ∈ S , 0 ≤ λ ≤ 1, we have:

• Since λ ≥ 0,Aa ≤ b, we have λAa ≤ λb.

• Since 1− λ ≥ 0,Aa
′ ≤ b, we have (1− λ)Aa

′ ≤ (1− λ)b.

Adding up the two inequalities above, we have:

A(λa+ (1− λ)a
′︸ ︷︷ ︸

∈S

) ≤ b

Therefore, any polyhedra is convex, and we can also deduce that the feasible region of an
LP is convex.
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2.11. EXTREME POINTS

Remark

A circle: C := {x : x2
1 + x2

2 ≤ 1} is convex.

Proof. Let a, b ∈ C , a ̸= b, we wish the convex combination of a and b are also in C .
That is, we wish to prove:

(λa1 + (1− λ)a2)
2 + (λb1 + (1− λ)b2)

2 ≤ 1, 0 ≤ λ ≤ 1

From the LHS:

(λa1 + (1− λ)a2)
2 + (λb1 + (1− λ)b2)

2

=λ2(a21 + a22) + 2λ(1− λ)(a1a1 + b1b2) + (1− λ)2(b21 + b22)

≤λ2 + 2λ(1− λ)(
(a21 + a22) + (b21 + b22)

2
) + (1− λ)2

≤λ2 + 2λ(1− λ) + (1− λ)2 = 1

Note that we used the inequalities: mn ≤ m2+n2

2
, a21 + a22 ≤ 1, b21 + b22 ≤ 1.

Therefore, a circle is indeed convex.

2.11 Extreme Points

Definition

Point x ∈ Rn is properly contained in the line segment L if

• x ∈ L and x is not the endpoints of L.

Definition

Point x ∈ Rn is an extreme point for S if and only if there’s no 0 < λ < 1 and
no two points a1, a2 ∈ S , a1 ̸= a2 such that x = λa1 + (1− λ)a2.

Remark

By the definitions above, we can also deduce:
Point x ∈ Rn is NOT an extreme point for S if there exists a line segment L ⊆ S
where L properly contains x.

Remark

A convex set may have infinite number of extreme points.

Proof. A circle C := {x : x2
1 + x2

2 ≤ 1} can be an example of our remark. Assume,
there exists a non-extreme point x on the boundary of C (x2

1 + x2
2 = 1), then, there

exists a line segment L ⊆ C where L properly contains x. But by definition, a circle
is curved everywhere, which means there’s even no segment in a circle. This leads to a
contradiction to our assumption. Therefore, every point in the boundary of a circle is an
extreme point. And since there are infinite points in the boundary of the circle, there are
an infinite number of extreme points.
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2.11. EXTREME POINTS

Definition

Suppose d ∈ P , we say a constraint a⊤i ≤ bi is tight for di if a
⊤
i d = bi. The set of

all tight constraints is denoted Āx ≤ b̄.

Example

Consider Ax = b :

(
1 2
4 5

)
x ≤

(
3
10

)
, then:

• The first constraint is tight for d = (1, 1).

• The second constraint is tight for d = (5/2, 0).

Theorem

Let P = {x ∈ Rn,Ax ≤ b} be a polyhedron and let x̄ ∈ P .

• If rank(Ā) = n, then x̄ is an extreme point.

• If rank(Ā) < n, then x̄ is Not an extreme point.

We can use the following remark to prove this theorem.

Remark

Let a, b, c ∈ R, and 0 < λ < 1, then if

a = λb+ (1− λ)c, b ≤ a, c ≤ a

the a = b = c.

• Proof of remark:

Proof. Fix c and a ̸= b, i.e. a > b, then:

a = λb+ (1− λ)c < λa+ (1− λ)c ≤ λa+ (1− λ)a = a

contradicts the fact a = a. Similarly, if we fix b and a ̸= c, i.e. a > c, then:

a = λb+ (1− λ)c < λb+ (1− λ)a ≤ λa+ (1− λ)a = a

Therefore, we must have a = b = c.

• Proof of theorem:

Proof. Suppose x̄ is not an extreme point, then there exists a line segment LS

connecting x1, x2, such that x̄ = λx1 + (1 − λ)x2 → Āx̄ = b̄ = λĀx1 + (1 − λ)Āx2

with some 0 < λ < 1. Since Āx1 ≤ b̄ and Āx2 ≤ b̄, we have b̄ = Āx1 = Āx2. If
rank(A) = n, then A is invertible, which means the solution of Āx = b̄ is unique,
hence, x̄ = x̄1 = x̄2 means that x̄ is an extreme point, contradicting the assumption.
Then rank(A) = n.

By its contrapositive, the original statement is then true.
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2.11. EXTREME POINTS

Remark

Consider the LP: max{c⊤x : Lx = d, x ≥ 0}, where c ∈ Rn,L ∈ Rm×n, d ∈ Rm, and
L has linearly independent rows. Then,

• Any extreme point of the feasible region of the LP is a basic feasible solution.

Proof. Let x̄ be an arbitrary extreme point in this LP.

• Assume for contradiction, it is not a basic feasible solution. Say B = {i : x̄i > 0},
with |B | = k.

• Then LB must not have linearly independent columns, since if it has independent
columns, then x̄ would be basic, which contradicts our assumption.

• Let d
′ ̸= 0 ∈ Rk, such that LCd

′
= 0. And define d ∈ Rn with di = d

′
i for i ∈ C ,

and di = 0 otherwise.

• Then, for some small number ϵ > 0, we have distinct points x̄± ϵd both in P , since
LCd

′
= 0 and thus Cd = 0, and with x̄ ± ϵd ≥ 0 for some small ϵ since di = 0

whenever x̄i = 0.

• But since x̄ is an extreme point, there are no such two distinct points, and this
leads to a contradiction.

• Therefore, the x̄ must be basic, and it is a feasible basic solution since it satisfies
every constraint well.

Here is an example of applying the remark:

Example

Find all extreme points of the polyhedron

P :=

{
x ∈ R4 :

(
1 −1 3 1
−1 3 0 1

)
x =

(
3

1

)
, x ≥ 0

}

Solution: Firstly, the matrix

(
1 −1 3 1
−1 3 0 1

)
has linearly independent rows obvi-

ously, and this is the condition we can use the remark’s conclusion in this question.
And since any extreme point of the feasible region of the LP is a basic feasible
solution, we just simply find every basic feasible solution of this LP and check if
they are extreme points for polyhedra R by using theorem:

• Let P = {x ∈ Rn,Ax ≤ b} be a polyhedron and let x̄ ∈ P .

– If rank(Ā) = n, then x̄ is an extreme point.

– If rank(Ā) < n, then x̄ is Not an extreme point.
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2.11. EXTREME POINTS

Example

And also, we provide the standard inequality form for R: (say R
′
)

R
′
=


x ∈ R4 :



1 −1 3 1
−1 3 0 1
−1 1 −3 −1
1 −3 0 −1
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


x ≤



3
1
−3
−1
0
0
0
0




• Basis B = {1, 2}, (it is a valid basis), the corresponding basic solution is (5,
2, 0, 0), and it is feasible. By checking this in R

′
using theorem 2.20, we have:

Ā =


1 −1 3 1
−1 3 0 1
−1 1 −3 −1
1 −3 0 −1
−1 0 0 0
0 −1 0 0

 , b̄ =


3
1
−3
−1
0
0


And since rank(Ā) = 4 = n, we can say this is an extreme point.

• Basis B = {1, 3}, (it is a valid basis), the corresponding basic solution is (-1,
0, 4/3, 0), which is not feasible since it is ̸≥ 0.

• Basis B = {1, 4}, (it is a valid basis), the corresponding basic solution is (1,
0, 0, 2), and it is feasible. By checking this in R

′
using theorem 2.20, we have:

Ā =


1 −1 3 1
−1 3 0 1
−1 1 −3 −1
1 −3 0 −1
−1 0 0 0
0 0 0 −1

 , b̄ =


3
1
−3
−1
0
0


And since rank(Ā) = 4 = n, we can say this is an extreme point.

• By using the same method, we can find the rest of the extreme points:(0, 1/3,
10/9, 0), (0, 0, 2/3, 1).

Therefore, the all extreme points are:

(5, 2, 0, 0)

(1, 0, 0, 2)

(0, 1/3, 10/9, 0)

(0, 0, 2/3, 1)
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2.11. EXTREME POINTS

What if the original polyhedron is not in form {Ax = b}? See this example.

Example

Find the extreme points for:{
x ∈ R3 :

(
0 1 2
1 0 1

)
x ≤

(
3

2

)
, x ≥ 0

}
• Convert the original polyhedron explicitly into the form {x ∈ Rn : Ax ≤ b}.
In the example, converting givesx ∈ R3 :


0 1 2
1 0 1
−1 0 0
0 −1 0
0 0 −1

x ≤


3
2
0
0
0




• By theorem 2.20, the point a in the polyhedron is an extreme point if and
only if the matrix of tight constraints has rank n, in this case, n = 3.

– Since the matrix

(
0 1 2
1 0 1

)
’s rank is 2, at least one of the remaining

constraints −a ≤ 0 is tight. That is, ai = 0 for at least one i ∈ {1, 2, 3}.

– When exactly one of ai = 0, which means

(
0 1 2
1 0 1

)
a =

(
3
2

)
.

∗ Consider a1 = 0, it gives a2 = −1, a3 = 2, which is infeasible.

∗ Consider a2 = 0, it gives a1 = 1/2, a3 = 3/2, this is valid.

∗ Consider a3 = 0, it gives a1 = 2, a2 = 3, which is also valid.

– When exactly two of ai = 0.

∗ Consider a1, a2 = 0, we need one row of

(
0 1 2
1 0 1

)
a ≤

(
3
2

)
tight.

·
(
0 1 2

)
a = 3, it gives a3 = 3/2.

·
(
1 0 1

)
a = 2, it gives a3 = 2.

∗ Consider a1, a3 = 0, we need
(
0 1 2

)
a = 3, it gives a2 = 3.

∗ Consider a2, a3 = 0, we need
(
1 0 1

)
a = 2, it gives a1 = 2.

– When all of ai = 0, this is valid.

In conclusion, all extreme points are:

(1/2, 0, 3/2)⊤, (2, 3, 0)⊤, (0, 0, 3/2)⊤

(0, 0, 2)⊤, (0, 3, 0)⊤, (2, 0, 0)⊤

A clearer thinking is, the extreme points are the intersection of hyperplanes. You
can also use this way to find extreme points, an example is provided here: example
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2.11. EXTREME POINTS

We have a theorem that builds the relation between the extreme point and the basic
feasible solution: (no proof provided here)

Theorem

Suppose we have an LP in SEF, then the extreme points of its feasible region are
exactly the basic feasible solution of the LP.

By using this theorem, after finding the basic feasible solutions, we don’t have to check
if it is an extreme point anymore since they are one-to-one correspondence.

Till now, we learned the full procedure to determine the outcomes with certificates for
an LP and also learned the extreme points, which gives us a better understanding of LP.
Later, our key point is Duality, which can make it even easier to get the optimal solution
and value. We will also look back at the Shortest path problems and perfect matching
problems!

52



Chapter 3

Duality

3.1 Weak Duality

Start with an example:

min (2, 3)x

s.t.

 2 1
1 1
−1 1

x ≥

20
18
8

 , x ≥ 0

We wish to find a lower bound to the objective value. Suppose x is a feasible solution,
then x satisfies:

y1 · (2, 1)x ≥ y1 · 20
y2 · (1, 1)x ≥ y2 · 18

y3 · (−1, 1)x ≥ y3 · 8

for y1, y2, y3 ≥ 0. Adding up these inequalities gives:

(2y1 + y2 − y3, y1 + y2 + y3)x ≥ 20y1 + 18y2 + 8y3

⇒
(
y1 y2 y3

) 2 1
1 1
−1 1

x ≥
(
y1 y2 y3

)20
18
8


Then, we have our objective function:

(2, 3)x ≥ (2, 3)x+
(
y1 y2 y3

)20
18
8

−
(
y1 y2 y3

) 2 1
1 1
−1 1

x

︸ ︷︷ ︸
≤0

=
(
y1 y2 y3

)20
18
8


︸ ︷︷ ︸

a

+

(2, 3)−
(
y1 y2 y3

) 2 1
1 1
−1 1


︸ ︷︷ ︸

b

 x︸︷︷︸
≥0

If b ≤ 0, then the lower bound is a. The optimal value of our LP is then the greatest
lower bound. i.e. maximization of a.
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3.1. WEAK DUALITY

Let us reorder our idea:

• We wish to maximize a, with constraints b ≤ 0, y ≥ 0

This gives us a new LP!

max
(
y1 y2 y3

)20
18
8


s.t. (2, 3)−

(
y1 y2 y3

) 2 1
1 1
−1 1

 ≥ 0, y ≥ 0

Still not very familiar, rewrite it by transposing, we obtain:

max
(
20, 18, 8

)
y

s.t.

(
2 1 −1
1 1 1

)
y ≤ (2, 3), y ≥ 0

This LP is called the Dual of the original LP. Let’s go further:

• Use the method to determine the outcomes on the Dual LP gives: the optimal value
is 49, with optimal solution ȳ = (0, 5/2, 1/2)⊤.

• Then 49 is also the optimal value of the original LP.

This method supports us to solve the LP by solving another LP.

Definition

The LP (D) is called dual of the primal (original) LP (P):

• (P): min{c⊤x : Ax ≥ b, x ≥ 0}.

• (D): max{b⊤y : A⊤y ≤ c, y ≥ 0}.

Weak Duality

Let (P) be a minimization problem, and (D) be a maximization problem.

• If x̄ is feasible for (P), ȳ is feasible for (D), then b⊤ȳ ≤ c⊤x̄.

• If x̄ is optimal solution for (P), ȳ is optimal solution for (D), then b⊤ȳ = c⊤x̄.

Proof.

b⊤ȳ = ȳ⊤b

≤ ȳ⊤(Ax̄) equal if x̄ optimal

= (A⊤ȳ)⊤x̄

≤ c⊤x̄ equal if ȳ optimal

That proves both points of our theorem, we will extend this theorem later.
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3.1. WEAK DUALITY

In the primal-dual pair:

• (P): min{c⊤x : Ax ≥ b, x ≥ 0}.

• (D): max{b⊤y : A⊤y ≤ c, y ≥ 0}.

We can find some interesting corresponding:

• Each non-negative variable xe in (P) corresponds to a ≤-constraint in (D).

• Each ≥-constraints in (P) corresponds to a non-negative variable ye in (D).

• Primal variables ≡ Dual constraints.

• Primal constraints ≡ Dual variabless.

The following table shows how constraints and variables in primal and dual LPs corre-
spond:

(Pmax) (Pmin)

constraint
≤

variable
≥ 0

= free
≥ ≤ 0

variable
≥ 0

constraint
≥

free =
≤ 0 ≤

max c⊤x min b⊤y

s.t. Ax ? b s.t. A⊤y ? c

x ? 0 y ? 0

Example

(P):

max (1, 0, 2)x

s.t.

(
3 −1 0
1 0 1

)
x
≤
=

(
3
4

)
x1, x2 ≥ 0, x3 free

(D):

min (3, 4)y

s.t.

 3 1
−1 0
0 1

 y
≥
≥
=

1
0
2


y1 ≥ 0, y2 free
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Weak Duality Theorem

Let (Pmax) and (Pmin) be primal-dual pair. Say x̄ is feasible for (Pmax), ȳ is feasible
for (Pmin), then we have:

c⊤x̄ ≤ b⊤ȳ

If they are equal, then x̄ is optimal for (Pmax) and ȳ is optimal for (Pmin).

Remark

1. If the primal LP is unbounded, then its dual is infeasible.

2. If the primal LP and its dual are feasible, then they both have optimal solutions.

Proof. 1. Suppose, the primal LP is a maximization problem. For its contradictive, that
ȳ is feasible for the dual. By Weak Duality, c⊤x̄ ≤ b⊤ȳ for all x̄ that feasible for the
primal LP, this means the objective value of the primal LP has an upper bound, which
leads to a contradiction. Therefore, the dual is not feasible. The situation in which
the primal LP is a minimization problem is similar.

2. By Weak Duality, both of them are bounded, therefore both have optimal solutions.

3.2 Strong Duality
Strong Duality Theorem

Let (Pmax) and (Pmin) be primal-dual pair.

• If one has an optimal solution, then the other has an optimal solution too.

Say x̄ is optimal for (Pmax), ȳ is optimal for (Pmin), then we have:

c⊤x̄ = b⊤ȳ

The table of possible combinations of primal-dual pairs of LPs:

(D)
(P)

optimal unbounded infeasible

optimal ✓ × ×
unbounded × × ✓
infeasible × ✓ ✓

Example

(P) and (D) both infeasible:

• (P): min

{
x1 + 2x2 :

(
1 1
2 2

)
x =

(
1
3

)
, x free

}
.

• (D): max

{
y1 + 3y2 :

(
1 2
1 2

)
y =

(
1
2

)
, y free

}
.
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Example

(P) infeasible, (D) unbounded:

• (P): min

{
x1 + x2 :

(
1 1
2 2

)
x =

(
1
3

)
, x free

}
.

• (D): max

{
y1 + 3y2 :

(
1 2
1 2

)
y =

(
1
1

)
, y free

}
.

Remark

Consider the LPs:

• (P ): max{c⊤x : Ax ≤ b, x free}.

• (P
′
): max{c⊤x : Ax ≤ b, x ≥ 0}.

Suppose that (P ) has an optimal solution, (P
′
) is infeasible. Then the dual of (P

′
)

is unbounded.

Proof. Let (D) be the dual of (P ), (D
′
) be the dual of (P

′
), we have:

• (D): min{b⊤y : A⊤y = c, y ≥ 0}.

• (D
′
): min{b⊤y : A⊤y ≥ c, y ≥ 0}.

• Since (P ) is optimal, by Strong Duality Theorem, (D) is optimal (at ȳ).

• Since (P
′
) is infeasible, by the table of possible primal-dual pairs, (D

′
) is

infeasible or unbounded.

Now, because (D) is optimal (feasible) at ȳ, we have A⊤ȳ = c, ȳ ≥ 0, we can found
that ȳ is also a feasible solution to (D

′
). This proves (D

′
) is not infeasible. Hence,

(D
′
) is unbounded.

In the later few pages, we will revisit some problems we’ve already introduced.
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3.3. SHORTEST PATH PROBLEM REVISIT

3.3 Shortest Path problem revisit

Given the shortest path instance G = (V ,E ) with s, t ∈ V , ce ≥ 0 for all e ∈ E , then
the shortest-path IP is:

min
∑

(cexe : e ∈ E )

s.t.
∑

(xe : e ∈ δ(U ),U ⊆ V , s ∈ U , t ̸∈ U ) ≥ 1

x ≥ 0, x ∈ Z

Definition

By dropping the integrality restriction of this IP, the result LP is called relax-
ation of the original IP.

Remark

Since we obtain the relaxation LP by dropping the integrality restriction of the
original IP, the range of objective value of the original IP is the subset of relaxation
LP’s. So if we can find the optimal value of the relaxation LP, then the optimal
value can be a lower bound of the original IP.

We can write the shortest-path LP relaxation as:

min c⊤x

s.t. Ax ≥ 1

x ≥ 0

where

• A has a column for every edge and a row for every s, t-cut δ(U ).

• A[U , e] = 1 if e ∈ δ(U ), and 0 otherwise.

We can obtain its dual:

max 1⊤y

s.t. A⊤y ≤ c

y ≥ 0

Let’s go further on this dual, can we find that the new constraints have some special
meaning in the graph?

Examples

Consider the graph below, we wish to find the shortest s, t− path.

s b

td

5

4

3

2
1
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Examples

We can write an IP for this problem:

• Objective function:∑
(cexe : e ∈ E ) = 5xsb + 4xbt + 3xtd + 2xds + xbd

• Constraints:

– U = {s}, δ(U ) = {sb, sd} ⇒ xsd + xsb ≥ 1.

– U = {s, d}, δ(U ) = {sb, db, dt} ⇒ xsb + xdb + xdt ≥ 1.

– U = {s, b}, δ(U ) = {sd, bd, bt} ⇒ xsd + xbd + xbt ≥ 1.

– U = {s, b, d}, δ(U ) = {dt, bt} ⇒ xdt + xbt ≥ 1.

– x ≥ 0, x ∈ Z.

IP:

min (5, 4, 3, 2, 1)x

s.t.

sb bt td ds bd

δ({s}) →
δ({s, d}) →
δ({s, b}) →
δ({s, b, d}) →


1 0 0 1 0
1 0 1 0 1
0 1 0 1 1
0 1 1 0 0

x ≥ 1, x ≥ 0, x ∈ Z

Our (relaxation) dual is:

max (1, 1, 1, 1)y

s.t.

δ({s})︸ ︷︷ ︸
↓

δ({s, b})︸ ︷︷ ︸
↓

sb →
bt →
td →
ds →
bd →


1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0
0 1 1 0

 y ≤


5
4
3
2
1

 , y ≥ 0

↑︷ ︸︸ ︷
δ({s, d})

↑︷ ︸︸ ︷
δ({s, b, d})

We can then conclude the constraints:∑
(yU : δ(U )︸ ︷︷ ︸

s,t-cut contains e

) ≤ ce, e ∈ E
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In the rest of this section, we will present an algorithm to solve the shortest path problem
based on our duality, before that, we need to know some definitions:

Definition

We call the ordered pairs of vertices arcs.

Example

We denote an arc from u to v as u⃗v, which is different from v⃗u.

Definition

A directed path in G is a sequence of arcs

⃗v1v2, ⃗v2v3, · · · , ⃗vk−1vk

where all vivi+1 ∈ E (G), and vi ̸= vj if i ̸= j.

Definition

Let y be a feasible dual solution. The slack of an edge e ∈ E is defined as:

slacky(e) = ce −
∑

(yU : δ(U )︸ ︷︷ ︸
s,t-cut contains e

)

Now, we introduce the algorithm to find the shortest path:

Remark

Input: Graph G = (V ,E ), costs ce ≥ 0 for all e ∈ E .s, t ∈ V , s ̸= t.
Output: The shortest s, t-path P .

1: Start with y = 0, then set U := {s}.

2: while t ̸∈ U , do:

• Let ab be an edge in δ(U ), with the smallest slack for y where a ∈ U , b ̸∈ U .

• Set yU := slacky(ab).

• Reset U := U︸︷︷︸
original U

∪{b}.

• Change edge ab into an arc a⃗b.

3: End while.

4: Find a directed s, t-path P through the arcs.

5: return a directed s, t-path P .

* Note that we won’t cover the method of finding a directed s, t-path P through the arcs.
As before, a procedure is provided. (On the next page)
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Remark

Start

Input: Graph G = (V ,E ), costs ce ≥ 0 for all e ∈ E , s, t ∈ V , s ̸= t.

Set y := 0,U := {s}.

t ∈ U ?Find a directed s, t-path P through the arcs

Return the directed s, t-path P

• Let ab be an edge in δ(U ), with the
smallest slack for y where a ∈ U , b ̸∈ U .

• Set yU := slacky(ab).

• Reset U := U︸︷︷︸
original U

∪{b}.

• Change edge ab into an arc a⃗b.
End

True

False

Remark

If we have a choice, just choose randomly.

Example

We will apply the algorithm on the following graph:

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

* The solution is on the next page.
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Example

Solution:

• Start with U = {s}, δ(U ) = sa, sc, sd.

– slacky(sa) = 2− 0 = 2.

– slacky(sc) = 1− 0 = 1.

– slacky(sa) = 3− 0 = 3.

We can find slacky(sc) = 1 is the smallest one.

• Set yU := slacky(sc) = 1.

• Reset U := {s} ∪ {c} = {s, c}.

• Change edge sc into an arc s⃗c.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

• Start with U = {s, c}, δ(U ) = sa, cb, ct, cd, sd.

– slacky(sa) = 2− 1 = 1.

– slacky(cb) = 2− 0 = 2.

– slacky(ct) = 4− 0 = 4.

– slacky(cd) = 1− 0 = 1.

– slacky(sd) = 3− 1 = 2.

We can find slacky(sa) = 0 is the smallest one.

• Set yU := slacky(sa) = 1.

• Reset U := {s, c} ∪ {a} = {s, c, a}.

• Change edge sa into an arc s⃗a.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

• Start with U = {s, c, a}, δ(U ) = ab, cb, ct, cd, sd.

– slacky(ab) = 1− 0 = 1.

– slacky(cb) = 2− 1 = 1.

– slacky(ct) = 4− 1 = 3.

– slacky(cd) = 1− 1 = 0.

– slacky(sd) = 3− 1 = 2.

We can find slacky(sa) = 1 is the smallest one.

• Set yU := slacky(cd) = 0.

• Reset U := {s, c, a} ∪ {d} = {s, c, a, d}.

• Change edge cd into an arc c⃗d.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

62



3.3. SHORTEST PATH PROBLEM REVISIT

Example

• Start with U = {s, c, a, d}, δ(U ) = ab, cb, ct, dt.

– slacky(ab) = 1− 0 = 1.

– slacky(cb) = 2− 1 = 1.

– slacky(ct) = 4− 1 = 3.

– slacky(dt) = 2− 0 = 2.

We can find slacky(cb) = 1 is the smallest one.

• Set yU := slacky(cb) = 1.

• Reset U := {s, c, a, d} ∪ {b} = {s, c, a, d, b}.

• Change edge cb into an arc c⃗b.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

• Start with U = {s, c, a, d, b}, δ(U ) = bt, ct, dt.

– slacky(bt) = 4− 0 = 4.

– slacky(ct) = 4− 2 = 2.

– slacky(dt) = 2− 1 = 1.

We can find slacky(dt) = 1 is the smallest one.

• Set yU := slacky(dt) = 1.

• Reset U := {s, c, a, d} ∪ {t} = {s, c, a, d, b, t}.

• Change edge dt into an arc d⃗t.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

Now t ∈ U = {s, c, a, d, b, t}, we can find an s, t-path easily through the arcs:

P = d⃗c, c⃗d, d⃗t

with objective value 4.

s

a b

c

d

t

2

1

3

1

2
4

2
1

4

We also have our feasible dual solution:

y{s} = y{s,c} = y{s,c,a,d} = y{s,c,a,b,d} = 1

and yU = 0 otherwise. Therefore, we find P as the shortest path!
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3.4. PERFECT MATCHING PROBLEM REVISIT

3.4 Perfect Matching problem revisit

Definition

A graph is bipartite if and only if there is a partition (A,B) of the vertices such
that all edges join a vertex in A with a vertex in B .

Examples of bipartite graph

a b c

d e f

A

B

B

a b

cd

ef

g

h

i

A

Examples of non-bipartite graph

a b

c

a b

cd

e

a b

cd

Remark

• A cycle is a path with the same start and end point.

• A graph is bipartite if and only if it doesn’t contain a cycle with odd # of
edges.

* One taking this course doesn’t need to know the knowledge of the remark, putting it
here just aims for a better determination.
On the next page, we will introduce the algorithm to find the minimum-cost perfect
matching. Before that, a few definitions are needed.
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Definition

• Let S be a set, then |S | is the # of elements in S .

• Consider a graph G = (V ,E ), let S ⊆ V be a set of vertices. Then, we
denote the set of neighbors of S in graph G by

NG(S ) := {r ∈ V /S : sr ∈ E , s ∈ S}

• Let S ⊆ V be a set of vertices, and with its neighbors set NG(S ). If |S | >
|NG(S )|, then we call such S a deficient set.

Theorem

Let G = (V ,E ) be a bipartite graph with bipartition U ,W , where |U | = |W |.
Then there exists a perfect matching M in G if and only if G has NO deficient
set S ⊆ U .

Here is the algorithm to find the minimum-cost perfect matching for bipartite graphs.

Remark

Input: G = (V ,E ) with bipartition U ,W , where |U | = |W |, and the costs c ≥ 0.
Output: A minimum cost perfect matching M or a deficient set S .

1. Set ȳv :=
1
2
min{ce : e ∈ E} for all v ∈ V .

2. loop

• Construct graph H with vertices V and edges {uc ∈ E : cuv = ȳu + ȳv}.
• if H has perfect matching M , then

return M as a minimum-cost perfect matching of G .

• Let S ⊆ U be a deficient set for H .

• if all edges of G with an endpoint in S have an endpoint in NH (S ), then
return S as a deficient set of G , no prefect marching exists.

• Set ϵ := min{cuv − ȳu − ȳv uv ∈ E , u ∈ S , v ̸∈ NH (S )}.

• Set ȳv :=


ȳ + ϵ for v ∈ S

ȳ − ϵ for v ∈ NH (S )

ȳv otherwise

As before, a procedure and an example are provided: (see next page)
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Remark

Start

Input: Graph G = (V ,E ) with bipartition U ,W ,
where |U | = |W |, and the costs c ≥ 0.

Set ȳv :=
1
2
min{ce : e ∈ E} for all v ∈ V .

Construct graph H with vertices V and edges {uc ∈ E : cuv = ȳu + ȳv}.

H has perfect matching M ?

Let S ⊆ U be a deficient set for H .

All edges of G with an endpoint
in S have an endpoint in NH (S )?

• Set ϵ := min{cuv − ȳu− ȳv uv ∈ E , u ∈ S , v ̸∈ NH (S )}.

• Set ȳv :=


ȳ + ϵ for v ∈ S

ȳ − ϵ for v ∈ NH (S )

ȳv otherwise

Return:
M is the optimal perfect matching.

Return:
S as a deficient set of G .
No perfect matching exists.

False

True

True

False

Here’s an example of the application of this algorithm:
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Example

Find the minimum-cost perfect matching on the following graph G , if there’s no
perfect matching, provide a deficient set of G .

r

q

p

w

t

s

4

3

4
6

2
3

2

Solution:
Since the minimum cost is 2, and followed by the guide, we initially set potentials:

ȳr = ȳq = ȳp = ȳw = ȳt = ȳs = 1

Now the minimum cost perfect matching problem can be described as follows:

r

q

p

w

t

s

4

3

4
6

2
3

2

1

1

1

1

1

1

Then, we indicate the graph H , the deficient set S and NH (S ):

r

q

p

w

t

s

S

NH (S )
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Example

The edges of G with one endpoint in S and the other endpoint not in NH (S ) are
qw, qt, pw, hence

ϵ = min{cqw − ȳq − ȳw, cqt − ȳq − t̄w, cpw − ȳp − ȳw}
= min{4− 1− 1, 6− 1− 1, 3− 1− 1}
= 1

Therefore, we can redraw the problem as follows:

r

q

p

w

t

s

4

3

4
6

2
3

2

1

2

2

1

1

0

Then, we indicate the graph H , the deficient set S and NH (S ):

r

q

p

w

t

s

S

NH (S )

NH (S )

The edges of G with one endpoint in S and the other endpoint not in NH (S ) are
rt, qt, hence

ϵ = min{crt − ȳr − ȳt, cqt − ȳq − t̄w}
= min{3− 1− 1, 6− 1− 1}
= 1
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Example

Therefore, we can redraw the problem as follows:

r

q

p

w

t

s

4

3

4
6

2
3

2

2

3

3

0

1

-1

Then, we indicate the graph H , the deficient set S and NH (S ):

r

q

p

w

t

s

This graph has no deficient set, but it has a perfect matching M = {rt, qs, pq}.
This matching is a minimum cost perfect matching of G , with the optimal cost
equal to 8, the loop in the Algorithm ends, the Algorithm ends.

As for a more convenient demonstration, we provide a procedure on the next page:
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Example

G &
potential

H &
deficient set/matching

r

q

p

w

t

s

4

3

4
6

2
3

2

1

1

1

1

1

1

r

q

p

w

t

s

S

NH (S )

r

q

p

w

t

s

4

3

4
6

2
3

2

1

2

2

1

1

0

r

q

p

w

t

s

S

NH (S )

NH (S )

r

q

p

w

t

s

4

3

4
6

2
3

2

2

3

3

0

1

-1

r

q

p

w

t

s

Therefore, the optimal perfect matching H has been found ({rt, qs, pw}), with
optimal value 3 + 2 + 3 = 8.
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3.5 Geometric Optimality

3.5.1 Conplementary Slackness

We know that the feasible region of an LP is a polyhedron, and basic solutions correspond
to the extreme points of this polyhedron. When is an extreme point optimal?
We can rewrite (P ) using slack variables s:
(P

′
):

max c⊤x

s.t. Ax+ s = b, x, s ≥ 0

Note that

• (x, s) is feasible for (P
′
) → x is feasible for (P ).

• x is feasible for (P ) → (x, b− Ax) is feasible for (P
′
).

Suppose that x̄ is feasible for (P ), and ȳ is feasible for (D), the dual of (P ). Then,
(x̄, b− Ax̄︸ ︷︷ ︸

s̄

) is feasible for (P
′
). Recall that

ȳ⊤b = ȳ⊤(Ax̄+ s̄) = (ȳ⊤A)x̄+ ȳ⊤s̄ = c⊤x̄+ ȳ⊤s̄

and by Strong Duality:

x̄, ȳ both optimal ⇔ c⊤x̄ = ȳ⊤b

⇔ ȳ⊤s̄ = 0

By feasibility, x̄, s̄ ≥ 0, hence ȳ⊤s̄ = 0 holds if and only if ȳi = 0 or s̄i = 0 for 1 ≤ i ≤ m.
Therefore, we can conclude two theorems:

Complementary Slackness Theorem - Special Case

Let x̄ and ȳ be feasible for (P ) : max{c⊤x : Ax ≤ b, x free} and its dual (D) :
min{b⊤y : A⊤y = c, y ≥ 0}.
Then x̄ and ȳ are optimal if and only if

• ȳi = 0, or

• the i-th constraint of (P ) is tight for x̄. (s̄i = 0)

Complementary Slackness Theorem

Feasible solution x̄ and ȳ for (P ) and its dual (D) are optimal if and only if:

• x̄i = 0 or the i-th dual constraint is tight for ȳ for all row indices i.

• ȳi = 0 or the i-th primal constraint is tight for x̄ for all row indices i.

Here’s an example:
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Example

Consider the LP: (P ):

max (5, 3, 5)x

s.t.

 1 2 −1
3 1 2
−1 1 1

x ≥

 2
4
−1

 , x free

Its dual (D) is:

min (2, 4,−1)y

s.t.

 1 3 −1
2 1 1
−1 2 1

 y =

5
3
5

 , y ≥ 0

We have x̄ = (1,−1, 1)⊤, ȳ = (0, 2, 1)⊤, and it is easy to check if x̄ and ȳ are feasible.
Now, we check the optimality.

• x̄1 = 0 or (1, 3,−1)ȳ = 5︸ ︷︷ ︸
✓

.

• x̄2 = 0 or (2, 1, 1)ȳ = 3︸ ︷︷ ︸
✓

.

• x̄3 = 0 or (−1, 2, 1)ȳ = 5︸ ︷︷ ︸
✓

.

• ȳ1 = 0︸ ︷︷ ︸
✓

or (1, 2,−1)x̄ = 2.

• ȳ2 = 0 or (3, 1, 2)x̄ = 4︸ ︷︷ ︸
✓

.

• ȳ3 = 0 or (−1, 1, 1)x̄ = −1︸ ︷︷ ︸
✓

.

Since at least one of the conditions is satisfied, we can conclude that x̄ and ȳ are
optimal solutions.
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3.5.2 Cones of Vectors

Definition

Let a1, a2, · · · , ak be vectors in R. Then the cone generated by these vectors is
given by:

C = {λ1a1 + λ2a2 + · · ·+ λkak : λ ≥ 0}

Cone of tight constraints is the cone generated by transpose of rows of tight
constraints.

Example

Consider the constraints:

1 0
1 1
0 1

x ≤
(
2 3 2

)
, the tight constraints at x̄ =

(
2
1

)
are: (1, 0)x ≤ 2 and (1, 1)x ≤ 3.
Then, the cone of tight constraints for x̄ is:

C (

(
1

0

)
,

(
1

1

)
) =

{
λ1

(
1

0

)
+ λ2

(
1

1

)}

Definition

Let x̄ be a feasible solution to max{c⊤x : Ax ≤ b}.
Then x̄ is optimal if and only if c is in the cone of tight constraints for x̄.

Example

Consider the LP:

max (3/2, 1/2)x

s.t.

1 0
1 1
0 1

x ≤

2
3
2


and feasible solution x̄ = (2, 1)⊤, we’ve found cone of tight constraints for x̄ is
C (

(
1
0

)
,
(
1
1

)
) =

{
λ1

(
1
0

)
+ λ2

(
1
1

)}
.

Note that c = (3/2, 1/2)⊤ is in the cone of tight constraints as:(
3/2

1/2

)
= 1 ·

(
1

0

)
+ 1/2 ·

(
1

1

)
Nice, the chapters above are all content for Linear Programs, in the next chapter, we will
focus on another type of optimization problem: Integer Program.
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Chapter 4

Integer Programs

• LP:

– Can solve very large instances.

– Algorithms exist that are guaranteed to be fast.

– Short certificates of optimality (Strong Duality).

– The only possible outcomes are infeasible, unbounded or optimal.

• IP:

– Some small instances can’t be solved.

– No fast algorithm exists.

– Doesn’t always exist certificate of infeasibility, or optimality.

– May have an outcome that none of infeasible, unbounded and optimal.

Example

Consider the following IP:

max x1 −
√
2x2

s.t. x1 ≤
√
2x2

x1, x2 ≥ 1, x1, x2 ∈ Z

• x1 −
√
2x2 ≤ 0, so this IP is not unbounded.

• x1 = x2 = 1 is a feasible solution, so this IP is not infeasible.

Therefore, we wish to prove this IP is not optimal as well. Assume, for a contra-
diction, (x̄1, x̄2) is optimal solution, and let x

′
1 = 2x̄1 + 2x̄2, x

′
2 = x̄1 + 2x̄2. (x

′
1, x

′
2)

is feasible since: x
′
1 = 2x̄1 + 2x̄2 ≥ 4 > 1, x

′
2 = x̄1 + 2x̄2 ≥ 3 > 1, and:

x
′
1

x
′
2

=
2x̄1 + 2x̄2

x̄1 + 2x̄2

= 1 +
x̄1

x̄1 + 2x̄2

= 1 +
1

1 + 2x̄2

x̄2

≤ 1 +
1

1 +
√
2
=

√
2

But we have 0 ≥ (x̄1 −
√
2x̄2)− (x

′
1 − x

′
2) = (

√
2− 1)(x̄1 −

√
2x̄2) ≤ 0, this means

x̄1 −
√
2x̄2 = 0, which implies at least one of x̄1, x̄2 are not integer, this leads to a

contradiction. Therefore, this IP is not optimal.
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4.1 Convex Hulls

Remark

There will NOT a practical procedure to solve IPs, but it will suggest a strategy.

Definition

Let C be a subset of Rn, the convex hull of C is the smallest convex set that
constraints C .

Remark

Given C ⊂ Rn, there is a unique smallest convex set containing C

Theorem

Consider P = {x : Ax ≤ b} where A, b are rational. Then, the convex hull of all
integer points in P is a polyhedron.

Let A, b be rational, and the (IP) is:

max{c⊤x : Ax ≤ b, x ∈ Z}

The convex hull of all feasible solutions of (IP) is a polyhedron: {x : A
′
x ≤ b

′}.
Then the LP with convex hull as constraints is:

max{c⊤x : A
′
x ≤ b

′}

Remark

• (IP) is infeasible if and only if (LP) is infeasible.

• (IP) is unbounded if and only if (LP) is unbounded.

• An optimal solution to (IP) is an optimal solution to (LP).

• An extreme optimal solution to (LP) is an optimal solution to (IP).

So the ”way” of solving an IP is:

• Compute A
′
, b

′
.

• Use Simpex to find an extreme optimal solution to LP.

Easier said than done, it is very hard to find such A
′
, b

′
, and they might be much more

complicated than A, b.
In the next section, we introduce a method called Cutting Planes to get closer to A

′
, b

′
.
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4.2 Cutting Planes

Definition

Suppose a constraint α⊤x ≤ β that

• is satisfied for all feasible solutions to the IP, and

• is not satisfied for x̄

We then call this constraint a cutting plane for x̄.

• ⌊x⌋ means floor x, which gives the greatest integer less than or equal to x.

• ⌈x⌉ means ceil x, which gives the smallest integer greater than or equal to y.

Example

• ⌊5.3⌋ = 5, ⌊3⌋ = 3, ⌊0⌋ = 0, ⌊−1.5⌋ = −2, ⌊−3⌋ = −3.

• ⌈5.3⌉ = 6, ⌈5⌉ = 5, ⌈0⌉ = 0, ⌈−1.2⌉ = −1, ⌈−3⌉ = −3.

Remark

Do Not think floor/ceil is round to 0!

Example

Consider the IP:

max (2, 5)x

s.t.

(
1 4
1 1

)
x ≤

(
8
4

)
, x ≥ 0, x ∈ Z.

Run Simplex on the IP without integrality constraint, we can find that x̄ =
(8/3, 4/3) is optimal, but note that they are not integers.
A cutting plane for x̄ is x1 + 3x2 ≤ 6. (We will learn how to find the cutting plan
later). Then, adding this into our IP:

max (2, 5)x

s.t.

1 4
1 1
1 3

x ≤

8
4
6

 , x ≥ 0, x ∈ Z.

Run Simplex on the new IP without integrality constraints, we can find that x
′
=

(3, 1)⊤ is optimal, and since it is integral, x
′
is also the optimal solution for IP.
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We will use Simplex to help find the cutting plane:

• Solve the relaxation LP (by dropping the integrality constraint) and get the LP
into the canonical form for basis B :

max c̄⊤x+ z̄

s.t. xB + ANxN = b, x ≥ 0

where N = {j : j ̸∈ B}, x̄N = 0, x̄B = b.

• If x̄ ∈ Z, then x̄ is optimal for the original IP, algorithm end.

• If x̄ ̸∈ Z, denote the ith basic variable r(i), and say x̄i be fractional, then bi is
fractional too. We know that every feasible solution to the IP satisfies:

bi = xr(i) +
∑
j∈N

Aijxj

⇒ bi︸︷︷︸
̸∈Z

≥ xr(i) +
∑
j∈N

⌊Aij⌋xj︸ ︷︷ ︸
∈Z

⇒ ⌊bi⌋ ≥ xr(i) +
∑
j∈N

⌊Aij⌋xj (∗)

• (∗) holds for all x ∈ Z, but invalid for x̄, since:

x̄r(i)︸︷︷︸
bi

+
∑
j∈N

⌊Aij⌋ x̄j︸︷︷︸
0

= bi︸︷︷︸
fractional

> ⌊bi⌋

Therefore, by definition, (∗) is the cutting plane for x̄.

Remark

We floored down to get the cutting plane above, but we can also ceil up!

bi = xr(i) +
∑
j∈N

Aijxj

⇒ bi︸︷︷︸
̸∈Z

≤ xr(i) +
∑
j∈N

⌈Aij⌉xj︸ ︷︷ ︸
∈Z

⇒ ⌈bi⌉ ≤ xr(i) +
∑
j∈N

⌈Aij⌉xj (∗∗)

(∗∗) holds for all x ∈ Z, but invalid for x̄, since:

x̄r(i)︸︷︷︸
bi

+
∑
j∈N

⌈Aij⌉ x̄j︸︷︷︸
0

= bi︸︷︷︸
fractional

< ⌈bi⌉

Therefore, by definition, (∗∗) is also a cutting plane for x̄.
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Example

Consider the IP:

max (2, 5)x

s.t.

(
1 4
1 1

)
x ≤

(
8
4

)
, x ≥ 0, x ∈ Z.

Transform it into SEF and drop the integrality constraints:

max (2, 5, 0, 0)x

s.t.

(
1 4 1 0
1 1 0 1

)
x =

(
8
4

)
, x ≥ 0.

Note here we have x1 + 4x2 + x3 = 8, x1 + x2 + x4 = 4. Run Simplex on the
LP gives:

max (0, 0,−1,−1)x+ 12

s.t.

(
1 0 −1/3 4/3
0 1 1/3 −1/3

)
x =

(
8/3
4/3

)
, x ≥ 0

with optimal solution (8/3, 4/3, 0, 0), which leads to the solution (8/3, 4/3)
of our original IP, which is not valid, so we have to find a cutting plane:

– Pick the first constraint (we can also pick the second one), and use the
floor-up method, it gives:

x1 − 1/3x3 + 4/3x4 = 8/3

⇒x1 + ⌊−1/3⌋x3 + ⌊4/3⌋x4 ≤ ⌊8/3⌋
⇒x1 − x3 + x4 ≤ 2

Substitute x3, x4 in terms of x1, x2 gives:

x1 + 3x2 ≤ 6

– Use the ceil-up method on the first constraint gives:

–

x1 − 1/3x3 + 4/3x4 = 8/3

⇒x1 + ⌈−1/3⌉x3 + ⌈4/3⌉x4 ≥ ⌈8/3⌉
⇒x1 + 2x4 ≥ 3

Substitute x4 in terms of x1, x2 gives:

x1 + 2x2 ≤ 5
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Our procedure for using the cutting plane to get the optimal solution of an IP is:

Remark

Start

Input: IP max{c⊤x : Ax ≤ b, x ≥ 0, x ∈ Z}

Set the auxiliary LP: max{c̄⊤x : A
′
x ≤ b

′
, x ≥ 0}, run Simpex on it.

LP feasible?

Let x̄ be the optimal solution of the LP,
x

′
be the corresponding solution to IP

x̄ ∈ Z?

• Find a cutting plane for x̄.

• Add constraint of cutting plane to the original
IP.

Return:
This IP is infeasible.

Return:
x

′
is the optimal solution.

End

True

False

True

False

Remark

In normal cases, A and b, c have only rational entries (∈ R), we have:

• LP is unbounded & IP is feasible → IP is unbounded.

• LP has an optimal solution & IP is feasible → IP has an optimal solution.

So even if IP is unbounded, we can still use this procedure, and then we can obtain
a certificate of unboundedness, x̄, d. If x̄ is integral, we can then conclude that the
IP is unbounded, if x̄ is not integral, we continue finding more cutting planes.

That’s the content of the Integer Program! In the next and last chapter, we will learn
some interesting properties of Nonlinear Programs.
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Chapter 5

Nonlinear Programs

5.1 Convexity

Definition

A nonlinear program (NLP) is a problem of the form:

min︸︷︷︸
or max

{f(x) : gi(x) ≤ 0, i = 1, 2, · · · , k}

where f : Rn → R, gi : Rn → R, i = 1, 2, · · · , k.

In this section, we will only focus on the case f(x) is linear.

Definition

Consider, the NLP:
min{f(x) : x ∈ S}

x ∈ S is a local optimum if there exists δ > 0 such that

∀x′ ∈ S,−δ ≤ x
′ − x ≤ δ

and we have f(x) ≤ f(x
′
).

Remark

Consider : min{c⊤x : x ∈ S}. If S is a convex and x is a local optimum, then
x is optimal.

Proof. Suppose ∃x′ ∈ S with c⊤x
′ ≤ c⊤x, let y = λx

′
+ (1 − λ)x for λ > 0 small. Since

S is a convex, y ∈ S , as λ small −δ ≤ y − x ≤ δ. Then, we have:

c⊤y = c⊤(λx
′
+ (1− λ)x)

= λ︸︷︷︸
≥0

c⊤x
′︸︷︷︸

<c⊤x

+(1− λ)︸ ︷︷ ︸
≥0

x

< λc⊤x+ (1− λ)c⊤x = c⊤x

This leads to a contradiction.
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Definition

Function f : Rn → R is convex if for all a, b ∈ Rn:

f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b)

for all 0 ≤ λ ≤ 1.

Example

Prove f(x) = x2 is convex.
Solution: Pick a, b ∈ R and pick λ such that 0 ≤ λ ≤ 1, then

f(λa+ (1− λ)b)− λf(a)− (1− λ)f(b)

=[λa+ (1− λ)b]2 − λa2 − (1− λ)b2

=2(1− λ)2b− λ(1− λ)(a2 + b2)

= −λ︸︷︷︸
≤0

(1− λ)︸ ︷︷ ︸
≥0

(a− b)2︸ ︷︷ ︸
≥0

≤ 0.

Remark

Let g : Rn → R be a convex function and β ∈ R, it follows that S = {x ∈ Rn :
g(x) ≤ β} is a convex set.

Proof. Pick a, b ∈ S, and λ where 0 ≤ λ ≤ 1. Let x = λa+ (1− λ)b, our goal is to show
that if x ∈ S , then g(x) ≤ β.

g(x) = g(λa+ (1− λb))

≤ λ︸︷︷︸
≥0

g(a)︸︷︷︸
≤β

+(1− λ)︸ ︷︷ ︸
≥0

g(b)︸︷︷︸
≤β

≤ λβ + (1− λ)β

= β

Remark

Suppose NLP:
min{c⊤x : gi(x) ≤ 0, i = 1, 2, · · · , k}

If all functions gi are convex, then the feasible region of NLP is convex.

Proof. Let Si = {x : gi(x) ≤ 0}, by previous result, Si is convex. The feasible region of the

NLP is
k⋂

i=1

Si. Since the intersection of convex sets is still convex, the result follows.
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Definition

Let f : Rn → R be a function. The epigraph of f is given by:

epi(f) =

{(
y

x

)
: y ≥ f(x), x ∈ Rn

}

Example

Consider f(x) = x2, then the draw of epi(f) is:

−3 −2 −1 1 2 3

2

4

6

8

x

y

Remark

Let f : Rn → R be a function, it follows that:

f is convex ⇔ epi(f) is convex.

5.2 The KKT Theorem

How can we prove a feasible solution x̄ is optimal for an NLP?
We can still use the method to handle Integer Program, that is:

• Find a relaxation of the NLP.

• Prove x̄ is optimal for the relaxation.

• Deduce that x̄ is optimal for the NLP.

In this section, we will go a bit further on this method.
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Example

Prove the x̄ = (1, 1)⊤ is an optimal solution to:

min − x1 − x2

s.t. − x2 + x2
1 ≤ 0

− x1 + x2
2 ≤ 0

− x2 + 1/2 ≤ 0

We can find a relaxation LP (We will show why this is the relaxation later)

min − x1 − x2

s.t. 2x1 − x2 ≤ 1

− x1 + 2x2 ≤ 1

x̄ is an optimal solution for the relaxation, therefore, x̄ is also an optimal solution
for the original NLP.

Definition

Let f : Rn → R be a convex function and x̄ ∈ Rn, then, s ∈ Rn is a subgradient
of f at x̄ if

h(x) := f(x̄) + s⊤(x− x̄) ≤ f(x),∀x ∈ Rn

Example

In our previous example, we have f(x) = −x1 + x2
2 and x̄ = (1, 1)⊤, we claim that

(−1, 2)⊤ is a subgradient of f at x̄:

h(x) := f(x̄) + s⊤(x− x̄) = −x1 + 2x2 − 1

and check h(x) ≤ f(x):

h(x)− f(x) = −x1 + 2x2 − 1 + x1 − x2
2 = −(x2 − 1)2 ≤ 0

Now we have a new question, how to get the subgradient s? We will cover that soon.

Definition

Let C ∈ Rn be a convex set and let x̄ ∈ C . The halfspace F = {x : s⊤x ≤ β} is
supporting C at x̄ if:

• C ⊆ F and

• s⊤x̄ = β. That is, x̄ is on the boundary of F .
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Remark

Let g : Rn → R be a convex and let x̄ where g(x̄) = 0. Let s be a subgradient of g
at x̄, let C = {x : g(x) ≤ 0},F = {x : h(x) := g(x̄) + s⊤(x− x̄) ≤ 0}. Then F is a
supporting halfspace of C at x̄.

• C is convex, as g is a convex function.

• F is a halfspace, as h(x) is an affine function.

• h(x̄) = g(x̄) = 0, thus, x̄ is on the boundary of F .

Example

Continue our NLP example: Let g(x) = x2
2 − x1, x̄ = (1, 1)⊤, and s = (−1, 2)⊤ as

a subgradient at x̄, we have:

h(x) = 0 + (−1, 2)

[(
x1

x2

)
−
(
1

1

)]
= −x1 + 2x2 − 1

and
F = {x : −x1 + 2x2 ≤ 1}

We can use this to construct relaxations of NLPs. Given constraint gi(x) ≤ 0. If we
replace the nonlinear constraint with the linear constraint h(x) := gi(x̄)+s⊤(x−x̄),
we then get a relaxation.

KKT Theorem - Subgradient

Let I denote the set of indices i for which gi(x̄) = 0, consider the NLP:

min c⊤x

s.t. gi(x) ≤ 0, i = 1, 2, · · · , k

where

• g1, g2, · · · , gk are all convex.

• x̄ is a feasible solution.

• ∀i ∈ I , gi(x̄) = 0.

• ∀i ∈ I , s(i) is a subgradient for gi at x̄.

If (−c) ∈ cone{s(i) : i ∈ I }, then x̄ is optimal.

Example

In our previous NLP example, we have:

−
(
−1

−1

)
∈ cone

{(
2

−1

)
,

(
−1

2

)}
⇒ x̄ optimal
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Remark

• Let f : Rn → R be a convex function and let x̄ ∈ Rn. If the gradient ∇f(x̄)
of f exists at x̄, then it is a subgradient.

• If the partial derivative ∂f(x)
∂xj

exists for f at x̄ for all j = 1, 2, · · · , n, then the

gradient ∇f(x̄) is obtained by evaluating for x̄,(
∂f(x)

∂x1

,
∂f(x)

∂x2

· · · , ∂f(x)
∂xn

)⊤

Example

In our previous NLP example, we have:(
∂f(x)

∂x1

,
∂f(x)

∂x2

)⊤

= (2x1,−1)⊤

For x̄, we get ∇f(x̄) = (2,−1)⊤. Since (2,−1)⊤ is the gradient of f at x̄, it is a
subgradient as well.

Definition

A feasible solution to x̄ is a Slater point of

min c⊤x

s.t. gi(x) ≤ 0, i = 1, 2, · · · , k

if gi(x̄) < 0 for all i = 1, 2, · · · , k.

Example

In our previous NLP example, x̄ = (3/4, 3/4)⊤ is a slater point.

KKT Theorem

Let I denote the set of indices i for which gi(x̄) = 0, consider the following NLP:

min c⊤x

s.t. gi(x) ≤ 0, i = 1, 2, · · · , k

Suppose that x̄ is a feasible solution, and

• g1, g2, · · · , gk are all convex.

• There exists a slater point.

• ∀i ∈ I , there exists a gradient ∇gi(x̄) of gi at x̄.

Then, x̄ is optimal ⇔ (−c) ∈ cone{∇gi(x̄) : i ∈ I }
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Now, looking back to our example, here is the whole solution:

Example

Prove the x̄ = (1, 1)⊤ is an optimal solution to:

min − x1 − x2

s.t. − x2 + x2
1 ≤ 0

− x1 + x2
2 ≤ 0

− x2 + 1/2 ≤ 0

Solution: Let g1(x) = −x2 + x2
1, g2(x) = −x1 + x2

2, g3(x) = −x1 + 1/2. Then,
g1(x̄) = −1 + 1 = 0, g2(x̄) = −1 + 1 = 0, g3 = −1 + 1/2 < 0, I = {1, 2}. Since we
have:

• g1, g2, g3 convex.

• There exists a slater point x
′
= (3/4, 3/4)⊤.

• ∀i ∈ I , there exists a gradient ∇gi(x̄) of gi at x̄.

– When i = 1:

∂g1(x)

∂x1

=
∂(−x2 + x2

1)

∂x1

= 2x1

∂g1(x)

∂x2

=
∂(−x2 + x2

1)

∂x2

= −1

Here, embed x̄, we have 2x̄1 = 2 exist, and ∇g1(x̄) =
(

2
−1

)
.

– When i = 2:

∂g2(x)

∂x1

=
∂(−x1 + x2

2)

∂x1

= −1

∂g2(x)

∂x2

=
∂(−x1 + x2

2)

∂x2

= 2x2

Here, embed x̄, we have 2x̄2 = 2 exist, and ∇g2(x̄) =
(−1

2

)
.

• cone{∇g1(x̄),∇g2(x̄)} = cone
{(

2
−1

)
,
(−1

2

)}
• −c =

(
1
1

)
= 1︸︷︷︸

λ1≥0

×
(

2
−1

)
+ 1︸︷︷︸

λ2≥0

×
(−1

2

)
.

Therefore, by KKT Theorem, we can conclude x̄ = (1, 1)⊤ is optimal of the NLP.

On the next page, we will extend the KKT Theorem, which supports us to solve the case
when the objective function is not linear.
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Recall the conditions of using KKT:

Remark

Let I denote the set of indices i for which gi(x̄) = 0, consider the following NLP:

min c⊤x

s.t. gi(x) ≤ 0, i = 1, 2, · · · , k

Suppose that x̄ is a feasible solution, and

• g1, g2, · · · , gk are all convex.

• There exists a slater point.

• ∀i ∈ I , there exists a gradient ∇gi(x̄) of gi at x̄.

Then, x̄ is optimal ⇔ (−c) ∈ cone{∇gi(x̄) : i ∈ I }. We can extend this to:

Definition

x̄ is optimal⇔ (−∇f(x̄)) ∈ cone{∇gi(x̄) : i ∈ I }, where f is the objective function.

Remark

For the case f is linear, we indeed have (−∇f(x)) = (−c). (easy to prove)

Finally, we finished all the content of C&O250!, we took a broad introduction to the field
of optimization, and we discussed the applications like shortest path problem, perfect
matching problem etc. We also learned some solution techniques, mathematical models
for real-life applications, algorithms, aspects of computational complexity, geometry, and
linear duality. I hope you can gain something and wish you all the best in your future
study journey. Thank you all for your reading!

87



References

• Catherine Zhou (2022), “C&O250, introduction to Optimization”. [Online] https:
//student.cs.uwaterloo.ca/~z374zhou/co250-note.pdf. [Accessed: 18/07/2024]
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